Chứng minh tổng các góc ngoài của tứ giác .
a) Tính tổng số đo các góc ngoài của tứ giác, ngũ giác, thập giác,
b) Chứng minh tổng số đo các góc ngoài của một đa giác (lồi) là 360°.
a) Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của tứ giác (lồi) là 1800 Þ Tổng số đo các góc trong và các góc ngoài của tứ giacs là 4.1800 = 7200.
Mặt khác, tổng số đo các góc trong của tứ giác là: (4-2).1800 = 3600.
Þ Tổng số đo các góc ngoài của tứ giác là: 7200 - 3600 = 3600
Tương tự, ta cũng tính được tổng số đo các góc ngoài của ngũ giác và thập giác là 3600.
b) Tổng số đo của góc trong và góc ngoài ở mỗi đỉnh của hình n - giác (lồi) là 1800 Þ Tổng số đo các góc trong và các góc ngoài của đa giác là n.1800.
Mặt khác, tổng số đo các góc trong của đa giác là (n - 2).1800.
Þ Tổng số đo các góc ngoài của đa giác là:
n.1800 - (n - 2).1800 = 3600.
tính các góc của tứ giác ABCD biết ^A:^B:^C:^D=1:2:3:4. Từ đó chứng minh tổng các góc ngoài của tứ giác =360 độ
Cho tứ giác ABCD . Tính các góc của tứ giác biết Â:B:C:D=1:2:3:4. Từ đó hay chứng minh rằng tổng các góc ngoài của tứ giác bằng 360độ
A:B:C:D=1:2:3:4
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}\) Ap dung tinh chat day ti so bang nhau ta co
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=A+B+C+D:10=360:10=36\)
=>A=36 ;B=72;C=108;D=144
TINH CAC GOC NGOAI
\(A_2+B_2+C_2+D_2=\left(180-36\right)+\left(180-72\right)+\left(180-108\right)+\left(180-144\right)\)
\(A_2+B_2+C_2+D_2=720-360=360\)
1, chứng minh rằng các góc của 1 tứ giác không thể đều là góc nhọn, không thể đều là góc tù
2, cho tứ giác ABCD chứng minh rằng tổng 2 góc ngoài tại đỉnh A vàC bằng tổng hai góc trong tại các đỉnh B và C
1 ta có :1 tứ giác có 4 góc và tổng phải bằng 360 độ mà 4 góc nhọn sẽ bé hơn 360(vì 1 góc nhọn <90 độ ) nên cac góc ko thể đều là góc nhọn.Đối với góc tù vẫn tương tự
Chứng minh rằng. Trong một tứ giác tổng các góc trong bằng tổng các góc ngoài
cho tứ giác ABCD . chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc ngoài của các đỉnh B và C
Góc kề bù với một góc của tứ giác gọi là góc ngoài của tứ giác.
a) Tính các góc ngoài của tứ giác ở hình 7a.
b) Tính tổng các góc ngoài của tứ giác ở hình 7b (tại mỗi đỉnh của tứ giác chỉ chọn một góc ngoài):
c) Có nhận xét gì về tổng các góc ngoài của tứ giác?
a) + Góc ngoài tại A là góc A1:
+ Góc ngoài tại B là góc B1:
+ Góc ngoài tại C là góc C1:
+ Góc ngoài tại D là góc D1:
Theo định lý tổng các góc trong một tứ giác bằng 360º ta có:
Lại có:
Vậy góc ngoài tại D bằng 105º.
b) Hình 7b:
Ta có:
Mà theo định lý tổng bốn góc trong một tứ giác bằng 360º ta có:
c) Nhận xét: Tổng các góc ngoài của tứ giác cũng bằng 360º.
Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tại các đỉnh B và D.
* Gọi ∠ A 1 , ∠ C 1 là góc trong của tứ giác tại đỉnh A và C, ∠ A 2 , ∠ C 2 là góc ngoài tại đỉnh A và C.
Ta có: ∠ A 1 + ∠ A 2 = 180 0 (2 góc kề bù)
⇒ ∠ A 2 = 180 0 - ∠ A 1
∠ C 1 + ∠ C 2 = 180 0 (2 góc kề bù) ⇒ ∠ C 2 = 180 0 - ∠ C 1
Suy ra: ∠ A 2 + ∠ C 2 = 180 0 - ∠ A 1 + 180o - ∠ C 1 = 360 0 – ( ∠ A 1 + ∠ C 1 ) (1)
* Trong tứ giác ABCD ta có:
∠ A 1 + ∠ B + ∠ C 1 + ∠ D = 360 0 (tổng các góc của tứ giác)
⇒ ∠ B + ∠ D = 360 0 - ( ∠ A 1 + ∠ C 1 ) (2)
Từ (1) và (2) suy ra: ∠ A 2 + ∠ C 2 = ∠ B + ∠ D
Chứng minh rằng trong 1 tứ giác tổng góc ngoài tại 2 đỉnh bằng tổng hai góc trong tại các đỉnh còn lại
Ta có góc B2 = 180 độ - góc B1
góc C2 = 180 độ - góc C1
=> góc B2 + góc C2 = 360 độ - ( góc B1 + góc C1 ) (1)
Tứ giác ABCD có góc A + góc B + góc C + góc D = 360 độ
=> góc A + góc D = 360 độ - ( góc B1 + góc C1 ) (2)
Từ (1), (2) => góc B2 + góc C2 = góc A + góc D
Vậy tổng 2 góc ngoài tại 2 đỉnh bằng tổng 2 góc trong tại các đỉnh còn lại
Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tại các đỉnh B và D ?
gọi các góc trong của đỉnh A và C là ^A1 và ^C1
còn các góc ngoài của đỉnh A và C là ^A2 và ^C2
ta có ^A1 + ^A2 =180o ( 2 góc kè bù )
và ^C1 +^C2 =180o (2 góc kề bù )
=> ^A2 =180o -^A1
và ^C2 =180o -^C2
=> ^A2+^C2 = 360o -^A1-^C1(1)
ta lại có ^A1+^B+^C1+^D =360o (tổng 4 góc tứ giác )
=> ^B+^D = 360o - ^A1-^C1(2)
từ (1) và(2) => ^B+^D = ^A2 +^C2 (cùng = 3600 -^a1 -^C1)
vậy.............
Gọi \(\widehat{A_1},\widehat{C_1}\) là góc trong của tứ giác tại đỉnh A và C. \(\widehat{A_1}=\widehat{C}_1\) là góc ngoài tại đỉnh A và C.
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (2 góc kề bù)
⇒\(\widehat{A_2}=180^0-\widehat{A_2}\)
\(\widehat{C_1}+\widehat{C_2}=180^0\)(2 góc kề bù)
⇒\(\widehat{C_2}=180^0-\widehat{C}_1\)
Suy ra:
\(\widehat{A_2}+\widehat{C_2}=180^0-\widehat{A_1}+180^0-\widehat{C_1}\)
\(=360^0-\left(\widehat{A_1}+\widehat{C_1}\right)\) (1)
Trong tứ giác ABCD ta có:
\(\widehat{A}+\widehat{B}+\widehat{C_1}+\widehat{D}=360^0\) (tổng các góc của tứ giác)
⇒\(\widehat{B}+\widehat{D}=360^0-\left(\widehat{A_1}+\widehat{C_1}\right)\) (2)
Từ (1) và (2) suy ra: \(\widehat{A_1}+\widehat{C_1}=\widehat{B}+\widehat{D}\)