gọi các góc trong của đỉnh A và C là ^A1 và ^C1
còn các góc ngoài của đỉnh A và C là ^A2 và ^C2
ta có ^A1 + ^A2 =180o ( 2 góc kè bù )
và ^C1 +^C2 =180o (2 góc kề bù )
=> ^A2 =180o -^A1
và ^C2 =180o -^C2
=> ^A2+^C2 = 360o -^A1-^C1(1)
ta lại có ^A1+^B+^C1+^D =360o (tổng 4 góc tứ giác )
=> ^B+^D = 360o - ^A1-^C1(2)
từ (1) và(2) => ^B+^D = ^A2 +^C2 (cùng = 3600 -^a1 -^C1)
vậy.............
Gọi \(\widehat{A_1},\widehat{C_1}\) là góc trong của tứ giác tại đỉnh A và C. \(\widehat{A_1}=\widehat{C}_1\) là góc ngoài tại đỉnh A và C.
Ta có: \(\widehat{A_1}+\widehat{A_2}=180^0\) (2 góc kề bù)
⇒\(\widehat{A_2}=180^0-\widehat{A_2}\)
\(\widehat{C_1}+\widehat{C_2}=180^0\)(2 góc kề bù)
⇒\(\widehat{C_2}=180^0-\widehat{C}_1\)
Suy ra:
\(\widehat{A_2}+\widehat{C_2}=180^0-\widehat{A_1}+180^0-\widehat{C_1}\)
\(=360^0-\left(\widehat{A_1}+\widehat{C_1}\right)\) (1)
Trong tứ giác ABCD ta có:
\(\widehat{A}+\widehat{B}+\widehat{C_1}+\widehat{D}=360^0\) (tổng các góc của tứ giác)
⇒\(\widehat{B}+\widehat{D}=360^0-\left(\widehat{A_1}+\widehat{C_1}\right)\) (2)
Từ (1) và (2) suy ra: \(\widehat{A_1}+\widehat{C_1}=\widehat{B}+\widehat{D}\)