Cho a = 2020 x 2020 so sanh a và b
b = 2018 x 2020 ( không cần tính giá trị của biểu thức của chúng )
Giá trị nhỏ nhất của biểu thức: |x| + 2020 là:
A. 2019 B. 2018 C. 0 D. 2020
Ta có |x| \(\ge\) 0 \(\forall\) x
\(\Rightarrow\left|x\right|+2020\ge2020\)
D
Không tính cụ thể giá trị, hãy so sánh: a = 2020. 2020 và b = 2018 . 2022
bn tham khảo link này nhé
https://olm.vn/hoi-dap/tim-kiem?id=1300742&subject=1&q=++++++++++kh%C3%B4ng+t%C3%ADnh+k%E1%BA%BFt+qu%E1%BA%A3+c%E1%BB%A5+th%E1%BB%83+h%C3%A3y+so+s%C3%A1nh+a+v%C3%A0+b+++a=+2020+.+2020b=+2018+.+2022+++++++++
So sánh tích 2020 x 2020 và 2019 x 2021 mà không tính cụ thể giá trị của chúng
\(2019\times2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2=2020\times2020\)
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
mà \(a+b+c\ne0\)
nên \(a^2+b^2+c^2-ab-ac-bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)
Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)
\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)
Không tính cụ thể giá trị, hãy so sánh: a = 2020. 2020 và b = 2018 . 2022
Đáp án là a>b!
Học tốt!
a) A= 2018 x 2022 và B= 2020 x 2020
ta có :
A=2018.2022=2020.2022-2.2022
=2020.2020+2020.2-2.2022
=2020.2020+2(2020-2022)
=2020.2020-4=B-4
=>A=B-4
hay B > A 4 đơn vị
cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020
Ta có : a3 + b3 + c3 = 3abc
=> (a + b)(a2 - ab + b2) + c3 - 3abc = 0
=> (a + b)3 - 3ab(a + b) + c3 - 3abc = 0
=> [(a + b)3 + c3] - [(3ab(a + b) + 3abc] = 0
=> (a + b + c)(a2 + b2 + 2ab - ac - bc + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
=> a2 + b2 + c2 - ab- ac - bc = 0
=> 2(a2 + b2 + c2 - ab- ac - bc) = 0
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
=> (a - b)2 + (b - c)2 + (a - c)2 = 0
=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)
Khi đó M = \(\frac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}=\frac{3.c^{2020}}{\left(3c\right)^{2020}}+\frac{3c^{2020}}{3^{2020}.c^{2020}}=\frac{1}{3^{2019}}\)
A) Với giá trị nào của x thì biểu thức A = 2021 - ( x+5)2 có giá trị lớn nhất? Tìm giá trị lớn nhất đó.
B) So sánh: A = \(\dfrac{2020^{100}-10}{2020^{90}-10}\) với \(B=\dfrac{2020^{99}-1}{2020^{89}-1}\)
Giúp mik với T_T
Cảm ơn nhiềuuuu<333
a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)
Dấu '=' xảy ra khi x=-5
Không tính giá trị biểu thức , hãy so sánh hai biểu thức sau :
a) A = 18 x 19
B= 17 x 20
b) C = 2019 x 2019
D = 2018 x 2020
a )
Ta có :
\(A=18\times19=\left(17+1\right)\times19=17\times19+19\)
\(B=17\times20=17\times\left(19+1\right)=17\times19+17\)
Do \(17\times19+19>17\times19+17\)
\(\Rightarrow A>B\)
Vậy \(A>B\)
b )
Ta có :
\(C=2019\times2019=\left(2018+1\right)\times2019=2018\times2019+2019\)
\(D=2018\times2020=2018\times\left(2019+1\right)=2018\times2019+2018\)
Do \(2018\times2019+2019>2018\times2019+2018\)
\(\Rightarrow C>D\)
Vậy \(C>D\)
a ) Ta có :
A = 18 x 19 = 18 x ( 17 + 2 ) = 18 x 17 + 18 x 2
B = 17 x 20 = 17 x ( 18 + 2 ) = 17 x 18 + 17 x 2
MÀ 18 x 17 + 18 x 2 > 17 x 18 + 17 x 2 Do đó A > B
Vậy A > B
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)
\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)
\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)
\(\Rightarrow x-y=1\Rightarrow P=1\)
\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)
\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)
\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)