Bài 1: Phân thức đại số.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thommas Tonny

cho a^3 +b^3+c^3=3abc và a+b+c khác 0 tính giá trị của biểu thức M=a^2020+b^2020+c^2020/(a+b+c)^2020

Nguyễn Lê Phước Thịnh
21 tháng 12 2020 lúc 21:15

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

mà \(a+b+c\ne0\)

nên \(a^2+b^2+c^2-ab-ac-bc=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow a=b=c\)

Ta có: \(M=\dfrac{a^{2020}+b^{2020}+c^{2020}}{\left(a+b+c\right)^{2020}}\)

\(=\dfrac{a^{2020}+a^{2020}+a^{2020}}{\left(a+a+a\right)^{2020}}=\dfrac{3\cdot a^{2020}}{9\cdot a^{2020}}=\dfrac{1}{3}\)


Các câu hỏi tương tự
Đặng Uyên Trang
Xem chi tiết
Tiểu Yêu Tinh
Xem chi tiết
Chi Nguyễn
Xem chi tiết
Ngô Thị Ngọc Anh
Xem chi tiết
Quốc Sơn
Xem chi tiết
Kwalla
Xem chi tiết
Lò Phạm Phương Linh
Xem chi tiết
Lò Phạm Phương Linh
Xem chi tiết
Sarah
Xem chi tiết