Tính (dùng hằng đẳng thức)
a) (A + B + C)2
b) (A + B - C)2
c) (A - B - C)2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1: Khai triển các hằng đẳng thức sau:
a, (3x-5y)2
b, (2x+7y)2
c, 4x2-49
d, (2x+3)3
e, (2x-5)3
f, (2x+3y)3
g, (3x-2y)3
Bài 2: Khai triển các hằng đẳng thức sau:
a, (a+b+c)2
b, (a-b+c)2
c, (a+b-c)2
d, (a-b-c)2
Bài 3: Điền đơn thức thích hợp vào ô trống:
a, 8x3+❏+❏+27y3=(❏+❏)3
b, 8x3+12x2.y+❏+❏=(❏+❏)3
c, x3-❏+❏-❏=(❏-2y)3
Bài 4: So sánh:
a, 2003.2005 và 20042
b, 716-1 và 8 ( 78+11) (74+1) (72+1)
Bài 5: Đưa về hiệu hai bình:
a, (2x-5) (2x+5)
b, (3x-5y) (3x+5y)
c, (3x+7y) (3x-7y)
d, (2x-1.2x+1)
Mọi người giúp mik giải gấp bài này nha. Cảm ơn nhiều ạ
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
Cho a,b,c∈Ra,b,c∈R và a2+b2+c2=21a2+b2+c2=21. Chứng minh rằng: 7≤|a−2b|+|b−2c|+|c−2a|≤√3997≤|a−2b|+|b−2c|+|c−2a|≤399 Ý tưởng: ( Nhưng không chắc chắn là đúng hướng :'> ) Dùng bất đẳng thức Cauchy-Schwarz để chứng minh bài toán -> x1+x2+...+xn≤|x1|+|x2|+...+|xn|≤√n(x21+x22+...+x2n)
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
Bài 1: Phân tích đa thức thành nhân tử ( phương pháp dùng hằng đẳng thức)
(a-2b)^2-4b^2 (a-b)^2-c^2 (a+b)^2-4 (a+3b)^2-9b^2
(x-3)^3-27 (x+1)^3-125
a) Cho a+b+c=0 c/m: a^3+a^2c-abc+b^2c+b^3=0
b) Cho a+b+c=2p c/m: 2bc+b^2+c^2-a^2=4p(p-a)
(không được sử dụng hằng đẳng thức)
Áp dụng hằng đẳng thức đáng nhớ:
a) (a2+b+c)2
b) (a+b+c)2
a) \(\left(a^2+b+c\right)^2\)
\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)
\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)
b) \(\left(a+b+c\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ca+2bc+c^2\)
a) (a^2+b+c)^2(a^2+b+c)^2
=(a^2+b)^2+2(a^2+b)c+c^2
=a^4+2a2b+b^2+2a2c+2bc+c^2
b) (a+b+c)^2(a+b+c)^2
=(a+b)^2+2(a+b)c+c^2
=a^2+2ab+b^2+2ca+2bc+c^2
Chứng minh các hằng đẳng thức sau
a^6-b^6=(a^2-b^2)[(a^2+b^2)^2-a^2b^2
Cho a,b,c là các số thực dương chứng minh rằng \(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(c+a-b\right)^2}+\frac{c^2}{2c^2+\left(a+b-c\right)^2}\le1\)(ưu tiên dùng bất đẳng thức cô-si)
Bài 2 Chứng minh hằng đẳng thức
a. (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
b. (a + b) 2 + (a − b) 2 = 2a 2 + 2b 2 .
c. (a + b) 2 − (a − b) 2 = 4ab.
a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)
c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)
\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)
a) (a+b+c)2 = (a+b)2 + 2(a+b)c + c2 = a2 + 2ab +b2 + 2ac+ 2bc+ c2
b) (a+b)2 + (a-b)2 = a2+ 2ab+ b2+ a2- 2ab +b2= 2a2 + 2b2
c) (a+b)2- (a-b)2 = a2+ 2ab+ b2- a2+ 2ab- b2 = 4ab