a) \(\left(a^2+b+c\right)^2\)
\(=\left(a^2+b\right)^2+2\left(a^2+b\right)c+c^2\)
\(=a^4+2a^2b+b^2+2a^2c+2bc+c^2\)
b) \(\left(a+b+c\right)^2\)
\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2\)
\(=a^2+2ab+b^2+2ca+2bc+c^2\)
a) (a^2+b+c)^2(a^2+b+c)^2
=(a^2+b)^2+2(a^2+b)c+c^2
=a^4+2a2b+b^2+2a2c+2bc+c^2
b) (a+b+c)^2(a+b+c)^2
=(a+b)^2+2(a+b)c+c^2
=a^2+2ab+b^2+2ca+2bc+c^2