Cho tứ giác lồi ABCD, gọi M,N là trung điểm AB, CD. CMR 2MN ≤ AB+BC
cho tứ giác lồi abcd,gọi m,n là trung điểm ab,cd.cmr:2mn=ad+bc giúp em với ạaa
Cho tứ giác lồi ABCD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của AB , CD, AD, BD, AC. BC CMR: MN, PQ, EF đồng quy.
Ta có : Tứ giác MPNQ là hình bình hành
MN và PQ cắt nhau tại trung điểm I của mỗi đường
Ta có : Tứ giác EPFQ là hình bình hành
EF đi qua I
Vậy EF , MN và PQ đồng quy
Cho tứ giác lồi ABCD trong đó AB vuông góc với BC.gọi M,N,P,Q lần lượt là trung điểm của AB,Bc,CD,DA. Biết MP+NQ lớn hơn hoặc bằng ½(AB+CD+BC+DA)
CMR) ABCD là Hình chữ nhật
Cho tứ giác lồi ABCD. Gọi M, N, E, F theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác MNEF là hình gì? Vì sao?
Bạn tra gu gồ được mà,hỏi làm gì cho mệt chớ,tìm được cách làm trên gu gồ là áp dụng vào bài thôi
noi A vs C ,BvsC
ap dung tinh chat duong trug binh cua tam giac
AM=EN
MN=FE
MNEF la hinh thoi
Cho tứ giác lồi ABCD, M, N lần lượt là trung điểm của AB, CD. H là hình chiếu
của M trên CD, K là hình chiếu của N trên AB. CMR SABCD = 1/2
( MH.CD + NK.AB) .
Cho tứ giác \(ABCD\) , gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Biết \(MP=\dfrac{1}{2}\left(AD+BC\right)\), \(NQ=\dfrac{1}{2}\left(AB+CD\right)\). \(CMR:\) tứ giác \(ABCD\) là hình bình hành.
Trên tia đối của PB lấy H sao cho BP = PH
ΔBPC và ΔHPD có:
BP = HP (cách vẽ)
\(\widehat{BPC}=\widehat{HPD}\left(đối.đỉnh\right)\) (đối đỉnh)
PC = PD (gt)
Do đó, ΔBPC=ΔHPD(c.g.c)
=> BC = DH (2 cạnh t/ứng)
và \(\widehat{PBC}=\widehat{PHD}\) (2 góc t/ứ), mà 2 góc này ở vị trí so le trong nên BC // HD
ΔABH có: M là trung điểm của AB (gt)
P là trung điểm của BH (vì HP = BP)
Do đó MP là đường trung bình của ΔABH
\(\Rightarrow MP=\dfrac{1}{2}AH\) ; MP // AH
\(\Rightarrow2MP=AH\)
Có: \(AD+DH\ge AH\) (quan hệ giữa 3 điểm bất kì)
\(\Leftrightarrow AD+BC\ge2MP\) (thay \(DH=BC;AH=2MP\))
\(\Leftrightarrow\dfrac{AD+BC}{2}\ge MP\)
Mà theo đề bài: \(MP=\dfrac{BC+AD}{2}\)
Do đó, \(AD+DH=AH\)
=> A,D,H thẳng hàng
Mà HD // BC (cmt) nên AD // BC
Tương tự: AB // CD
Tứ giác ABCD có: AD // BC (cmt);AB // CD (cmt)
Do đó, ABCD là hình bình hành
cho tứ giác ABCD , gọi M,N lần lượt là trung điểm của các cạnh AD , BC . CMR MN ≤ AB+CD/2
cho tứ giác ABCD , gọi M,N lần lượt là trung điểm của các cạnh AD , BC . CMR MN ≤ AB+CD/2
Gọi K là trung điểm BD
Xét tam giác ABD có:
Mlà trung điểm AD
K là trung điểm BD
=> MK là đường trung bình
\(\Rightarrow MK=\dfrac{1}{2}AB\left(1\right)\)
Xét tam giác BDC có:
K là trung điểm BD
N là trung điểm BC
=> NK là đường trung bình
\(\Rightarrow NK=\dfrac{1}{2}DC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow MK+NK=\dfrac{1}{2}\left(BC+DC\right)\)
Mà \(MK+NK\ge MN\)(bất đẳng thức trong tam giác KMN)
\(\Rightarrow MN\le\dfrac{AB+DC}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow MK+NK=MN\)
\(\Leftrightarrow\) K là trung điểm MN
Cho tứ giác lồi ABCD trong đó AB vuông góc với BC.gọi M,N,P,Q lần lượt là trung điểm của AB,Bc,CD,DA. Biết MP+NQ lớn hơn hoặc bằng ½(AB+CD+BC+DA)
CMR) ABCD là Hình chữ nhật
Ai là thần đồng toán hình thì help me,mình **** cho