cho tứ giác ABCD , gọi M,N lần lượt là trung điểm của các cạnh AD , BC . CMR MN ≤ AB+CD/2
cho tứ giác ABCD. Gọi M,N lần lượt là trung điểm của của AD và BC. CMR nếu MN=(AB+CD):2 thì ABCD là hình thang cân
Cho tứ giác ABCD(AB không song song vs CD). Gọi M, N lần lượt là trung điểm của AB và CD biết MN = \(\frac{BC+AD}{2}\) .CMR: ABCD là hình thang.
Cho tứ giác ABCD, gọi M,N lần lượt là trung điểm 2 cạnh AD và BC. Chứng minh MN ≤ AB+CD/2
Cho tứ giác ABCD gọi I,J,N,M lần lượt là trung điểm của AB,BC,CD,AD
a, cmr IJ=MN,JN=IN
b,gọi K là trung điểm của AC.cmrIN<,=1/2 của BC+CD
Cho tứ giác \(ABCD\) , gọi \(M,N,P,Q\) lần lượt là trung điểm của \(AB,BC,CD,DA\). Biết \(MP=\dfrac{1}{2}\left(AD+BC\right)\), \(NQ=\dfrac{1}{2}\left(AB+CD\right)\). \(CMR:\) tứ giác \(ABCD\) là hình bình hành.
Cho tứ giác ABCD gọi M,N lần lượt là trung điểm AD,BC..Biết MN=(AB+CD)/2 chứng minh ABCD là hình thang.?
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Cho hình chữ nhật ABCD. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD. Chứng minh tứ giác MNPQ là hình thoi.