cho M =2+2^2+2^3+2^4+.....+2^2017+2018
a)tính M
b)chứng minh rằng M chia hết cho 3
Cho M= 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 +......+2^ 2017 +2^ 2018
a) Tính M
b) Chứng tỏ rằng M chia hết cho 3
a)đề \(\Rightarrow2M=2^2+2^3+2^4+...+2^{2019}
\Rightarrow M=2^{2019}-2\)
b)đề \(\Rightarrow M=(2+2^2)+(2^3+2^4)+...+(2^{2017}+2^{2018})\)
\(\Rightarrow M=2.3+3.\left(2^3\right)+3.2^4+...+3.2^{2017}\)
\(\Rightarrow M⋮3\left(đpcm\right)\)
Cho M = 2 + 2^2 + 2^3 + .....+ 2^2017 + 2^2018
a) Tính M
b) Chứng minh rằng M chia hết cho 3
a) \(M=2+2^2+2^3+...+2^{2017}+2^{2018}\)
\(2M=2^2+2^3+2^4+...+2^{2018}+2^{2019}\)
\(2M-M=2^{2019}+2^{2018}-2^{2018}+2^{2017}-2^{2017}+...+2^2-2^2-2\)
\(M=2^{2019}-2\)
b) Từ câu a); hiển nhiên là 2 chia 3 dư 2.
Xét \(2^2\div3\); ta được 4 : 3 dư 1.
Xét \(2^3\div3\); ta được 8 : 3 dư 2.
Xét \(2^4\div3\); ta được 16 : 3 dư 1.
...
Dãy số tìm được khi lấy 2n chia cho 3 ( với n > 0 ) là 2; 1; 2; 1; ...
Mà 2019 : 2 dư 1 nên số dư của \(2^{2019}\div3\) là 2.
Vậy \(2^{2019}-2\equiv\left(3-3\right)mod3\equiv0mod3\)
Hoặc M chia hết cho 3 ( đpcm )
giải
a, M =2+2^2+2^3+...+2^2017+2^2018
2*M=2^2+2^3+...+2^2018+2^2019
2*M-M=(2^2+2^3+...=2^2019)-(2+2^2+2^3+...+2^2018)
2*M=2^2019+2
M=(2^2019+2)/2
a, M = 2 + 2^2 + 2^3 + .....+ 2^2017 + 2^2018
\(\Rightarrow\)\(2M=2^2+2^3+...+2^{2018}\)
\(\Rightarrow2M-M=\frac{2^{2018}-2}{1}-2\)
\(\Rightarrow M=2^{2018}-2\)
Vậy ...
b, M= 2 + 2^2 + 2^3 + .....+ 2^2017 + 2^2018
\(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2017}+2^{2018}\right)\)
\(M=2.\left(1+2\right)+2^3\left(1+2\right)+...+2^{2017}\left(1+2\right)\)
\(M=3.\left(2+2^3+...+2^{2017}\right)\)
\(\Rightarrow M⋮3\)
\(\left(Đpcm\right)\)
Chúc bn học tốt!
a,Tính S=4+7+10+13+......2014
b,Chứng minh rằng n.(n+2013)chia hết cho 2 với mọi số tự nhiên n
c,Cho M=2+2^2+2^3+.....2^20.Chứng tỏ rằng M chia cho 15
\(a,S=\dfrac{\left(2014+4\right)\left[\left(2014-4\right):3+1\right]}{2}=\dfrac{2018\cdot671}{2}=677039\\ b,\forall n\text{ lẻ }\Rightarrow n+2013\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(1\right)\\ \forall n\text{ chẵn }\Rightarrow n\left(n+2013\right)⋮2\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\\ c,M=\left(2+2^2+2^3+2^4\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{10}\right)\\ M=2\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\\ M=\left(1+2+2^2+2^3\right)\left(2+...+2^{16}\right)=15\left(2+...+2^{16}\right)⋮15\)
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Cho M =2+2^3+2^4+...+2^20 . Chứng minh rằng M chia hết cho 15
M=2+2^3+2^4+....+2^20 (tổng M có 20 số hạng)
M=(2+2^2+2^3+2^4)+....+(2^17+2^18+2^19+2^20) (tổng M có 20:4=5 nhóm)
M=2*((1+2+2^2+2^3)+...+2^17*(1+2+2^2+2^3)
M=2*15+........+2^17*15
M=15*(2+.+2^17)
VÌ 15 chia hết cho 5 .=>15*(2+...+2617) cũng chia hết cho 5
=>M chia hết cho 5
Vậy M chia hết cho 5
CHO A=4+2^2+2^3+2^4+.....+2^2015+2^2016
Chứng minh rằng A chia hết cho 2^2017
Ta có \(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^2+2^2+2^3+...+2^{2016}\)
Ta có \(2^2+2^2=2^2.2=2^3\)
\(2^3+2^3=2^3.2=2^4\)
..........................................
Tương tự với các số hạng còn lại ta được
\(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}+2^{2016}=2^{2016}.2=2^{2017}\)chia hết cho \(2^{2017}\)
Vậy A chia hết cho \(2^{2017}\)
Cho m= abba.Tìm m
a) m không chia hết cho 2; m chia 5 dư 3 và ab+ba=99
b) m chia hết cho 2; m chia 5 dư 3 và b-a chia hết cho 5
bài 2
a) Chứng minh rằng với mọi số tự nhiên n thuộc N thì (n+4).(n+9) chia hết cho 2
b) Chứng minh rằng abba chia hết cho 11
a, Tính S = 4 + 7 + 10 + 13 + ...... + 2014
b, Chứng minh rằng n.( n + 2013 ) chia hết cho 2 với mọi số tự nhiên n
c, Cho M = 2 + 22 + 23 + ....+ 220 Chứng tỏ rằng M chia hết cho 5
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
cho p/q là phân số tối giản thỏa mãn: p/q = 1/2! + 2/3! + 3/4! + ....+ 2016/2017! chứng minh rằng q chia hết cho 2017