Tìm Min \(K=5x^2+2y^2+4z^2-16x-4y-2xy+4yz+30\)
Tìm Min:
\(A=x^2+2y^2-2xy-4y+5\)
\(B=5x^2+8xy+5y^2-2x+2y\)
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
Tìm GTNN:
\(A=3x^2+2y^2+4z^2+2xy+4yz+4xz-4x-2y+2020\)
a) x^2+!x-3!=4xy-4y^2
b)x^2+5y^2+2xy+4x+5
c)x^2-2x+y^2+4yz+4z^2+6=0
d)y^2+2y+4-2^x+2+2=0
Tìm min: K= x^2 - 2xy +2y^2 - 4y +2016
\(K=x^2-2xy+2y^2-4y+2016=\)\(x^2-2xy+y^2+y^2-4y+4+2012=\)\(\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\)\(\left(x-y\right)^2+\left(y-2\right)^2+2012\)
Vì \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow K_{min}=2012\) Khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\y=2\end{cases}\Rightarrow}x=y=2}\)
\(x^2-2xy+2y^2-4y+2016\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+2012\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+2014\)
Xét đa thức \(\left(x-y\right)^2+\left(y-2\right)^2\)
Dễ thấy \(\left(x-y\right)^2+\left(y-2\right)^2\) luôn luôn dương với mọi giá trị của \(x,y\)
Vậy giá trị nhỏ nhất của k=2014
Tim Min
a ) 2x^2 - 4xy + 4y^2 - 6x
b) z^2 - 4z t + 5t ^2 - 2t + 13
c) 16x^2 - 8x+y^2 - 2y
a, \(2x^2-4xy+4y^2-6x\)
\(=x^2-2xy-2xy+4y^2+x^2-3x-3x+9-9\)
\(=\left(x-2y\right)^2+\left(x-3\right)^2-9\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2y\right)^2+\left(x-3\right)^2-9\ge-9\)
Để \(\left(x-2y\right)^2+\left(x-3\right)^2-9=-9\) thì
\(\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3-2y=0\\x=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=1,5\\x=3\end{matrix}\right.\)
Vậy..............
b, \(z^2-4zt+5t^2-2t+13\)
\(=z^2-2zt-2zt+4t^2+t^2-t-t+1+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của \(z;t\in R\) ta có:
\(\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Để \(\left(z-2t\right)^2+\left(t-1\right)^2+12=12\) thì
\(\left\{{}\begin{matrix}\left(z-2t\right)^2=0\\\left(t-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
Vậy...............
Câu c tường tự !!!
a,Đặt A= \(2x^2-4xy+4y^2-6x\)
\(=\left(2x^2-4xy-6x\right)+4y^2\)
\(=2\left(x^2-2xy-3x\right)+4y^2\)
\(=2\left[x^2-2x\left(y+\dfrac{3}{2}\right)+\left(y+\dfrac{3}{2}\right)^2\right]+4y^2-\left(y+\dfrac{3}{2}\right)^2\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+4y^2-y^2-3y-\dfrac{9}{4}\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y^2-y+\dfrac{1}{4}\right)-3\)
\(=2\left(x-y-\dfrac{3}{2}\right)^2+3\left(y-\dfrac{1}{2}\right)^2-3\)
Với mọi giá trị của x;y ta có:
\(\left(x-y-\dfrac{3}{2}\right)^2\ge0;\left(y-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x-y-\dfrac{3}{2}\right)^2+\left(y-\dfrac{1}{2}\right)^2-3\ge-3\)
Vậy Min A = -3 khi \(\left\{{}\begin{matrix}x-y-\dfrac{3}{2}=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}-\dfrac{3}{2}=0\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
b, Đặt B = \(z^2-4zt+5t^2-2t+13\)
\(=\left(z^2-4zt+4t^2\right)+\left(t^2-2t+1\right)+12\)
\(=\left(z-2t\right)^2+\left(t-1\right)^2+12\)
Với mọi giá trị của z;t ta có:
\(\left(z-2t\right)^2\ge0;\left(t-1\right)^2\ge0\)
\(\Rightarrow\left(z-2t\right)^2+\left(t-1\right)^2+12\ge12\)
Vậy Min B = 12 khi \(\left\{{}\begin{matrix}z-2t=0\\t-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z-2=0\\t=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}z=2\\t=1\end{matrix}\right.\)
c, Đặt C = \(16x^2-8x+y^2-2y\)
\(=\left(16x^2-8x+1\right)+\left(y^2-2y+1\right)-2\)
\(=\left(4x-1\right)^2+\left(y-1\right)^2-2\)
Với mọi giá trị x;y ta có:
\(\left(4x-1\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(4x-1\right)^2+\left(y-1\right)^2-2\ge-2\)
Vậy Min C = -2 khi \(\left\{{}\begin{matrix}4x-1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=1\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{4}\\y=1\end{matrix}\right.\)
Tìm min \(K=x^2-2xy+2y^2-4y+2016\)
\(K=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)Min K = 2012 <=> x = y = 2
tìm max y-2y^2+x^2-5x và
7xy-3x^2-4y^2+2x-3y+5
tìm min
3y^2-2xy+6x^2 -x +2y-1
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Cho 3x^2+y^2+2xy-16x-4y+22=0 . Tính D= 1/𝑥𝑦
Cho 4x^2+2y^2+z^2+14=2(xz+ỹ+5x+4y) . Tính E=x+y+z