Giải PT: \(\sqrt{x+2}+\sqrt{6-x}=x^2-8x+24\)
Giải Pt : \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
Điều kiện: \(2\le x\le6\)
Bình phương cả 2 vế ta được:
\(x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
<=> \(4+2\sqrt{-x^2+8x-12}=x^2-8x+24\) (*)
Đặt \(t=\sqrt{-x^2+8x-12}\left(t\ge0\right)\) => \(t^2=-x^2+8x-12=-\left(x^2-8x+24\right)+12\)
Phương trình (*) trở thành: 4 + 2t = 12 - t2
<=> t2 + 2t - 8 = 0
<=> (t +4).(t - 2) = 0 <=> t = 2 hoặc t = -4
t = 2 thỏa mãn
=> -x2 + 8x - 12 = 4
<=> -x2 + 8x - 16 = 0 <=> -(x - 4)2 = 0 <=> x = 4 (thỏa mãn)
Vậy x = 4 là nghiệm của pt
giải pt :
a, \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
b, \(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
c, \(\left(x+3\right)\sqrt{-x^2-8x+48}=x-24\)
d, \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
e, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
Giải PT :
\(\left(x+3\right)\sqrt{48-8x-x^2}=x-24\)
=>-(x+3)^2*(x-4)(x+12)=x^2-48x+576
=>-(x^2+6x+9)(x^2+8x-48)=x^2-48x+576
=>-x^4-14x^3-9x^2+216x+432=x^2-48x+576
=>x^4+14x^3+10x^2-264x+144=0
=>(x^2+4x-24)(x^2+10x-6)=0
=>\(x\in\left\{-5+\sqrt{31};-5-\sqrt{31};-2+2\sqrt{7};-2-2\sqrt{7}\right\}\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
Giải phương trình:
\(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
Lag tí -.-'
`ĐK:2<=x<=6`
BP 2 vế ta có:
`x-2+6-x+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>4+2\sqrt{(x-2)(6-x)}=x^2-8x+24`
`<=>2\sqrt{(x-2)(6-x)}=x^2-8x+20`
`<=>2sqrt{-x^2+8x-12}=x^2-8x+20`
`<=>-x^2+8x-20+2sqrt{-x^2+8x-12}=0`
`<=>-x^2+8x-12+2sqrt{-x^2+8x-12}-8=0`
Đặt `sqrt{-x^2+8x-12}=a(a>=0)`
`pt<=>a^2+2a-8=0`
`<=>a=2(tm),a=-4(l)`
`<=>-x^2+8x-12=4`
`<=>x^2-8x+16=0`
`<=>(x-4)^2=0<=>x=4(tmđk)`
Vậy `S={4}`
Giải phương trình : \(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)
\(\sqrt{x-2}+\sqrt{6-x}\text{=}\sqrt{x^2-8x+24}\)
\(ĐKXĐ:2\le x\le6\)
Xét VP của pt ta thấy : \(\sqrt{x^2-8x+24}\text{=}\sqrt{x^2-8x+16+8}\)
\(\text{=}\sqrt{\left(x-4\right)^2+8}\)
\(\Rightarrow VP\ge\sqrt{8}\)
Xét VT của pt ta có :
\(VT^2\text{=}x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
\(VT^2\text{=}4+2\sqrt{\left(x-2\right)\left(6-x\right)}\)
Áp dụng BĐT cô si cho 2 số không âm ta có :
\(2\sqrt{\left(x-2\right)\left(6-x\right)}\le\left(\sqrt{x-2}\right)^2+\left(\sqrt{6-x}\right)^2\)
\(\text{=}x-2+6-x\text{=}4\)
\(\Rightarrow VT^2\le8\)
\(\Rightarrow VT\le\sqrt{8}\)
Để \(VT\text{=}VP\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4\text{=}0\\\sqrt{x-2}\text{=}\sqrt{6-x}\end{matrix}\right.\)
\(\Leftrightarrow x=4\left(TM\right)\)
Vậy...........
1.Giải pt:\(2x^2+\left(14-2\sqrt{x^2+8x}\right)x+8x-14\sqrt{x^2+8x}+24=0\)
2. Tìm các số nguyên x, y thoả mãn pt: \(x^2+y^2-xy=x+y+2\)
Kiểm tra lại đề câu a, \(...+24\) thì pt vô nghiệm, phải là \(...-24\) mới có lý
b/ \(x^2-\left(y+1\right)x+y^2-y-2=0\) (1)
\(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)
\(\Leftrightarrow-3y^2+6y+9\ge0\)
\(\Leftrightarrow-1\le y\le3\Rightarrow y=\left\{-1;0;1;2;3\right\}\)
Thay lần lượt vào pt ban đầu để tìm x nguyên
ĐKXĐ: ...
\(\Leftrightarrow x^2+\left(x^2+8x\right)+\left(14-2\sqrt{x^2+8x}\right)x-14\sqrt{x^2+8x}+24=0\)
Đặt \(\sqrt{x^2+8x}=a\ge0\) pt trở thành:
\(x^2+a^2+\left(14-2x\right)x-14a+24=0\)
\(\Leftrightarrow x^2-2ax+a^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a\right)^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a+2\right)\left(x-a+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x+2\\a=x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=x+2\left(x\ge-2\right)\\\sqrt{x^2+8x}=x+12\left(x\ge-12\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x=x^2+4x+4\\x^2+8x=x^2+24x+144\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
Giải PT: \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK: `{(2x^2+8x+6>=0),(x^2-1>=0),(2x+2>=0):} <=> {(x=-1),(x>=1):}`
`\sqrt(2x^2+8x+6)+\sqrt(x^2-1)=2x+2`
`<=>(2x^2+8x+6)+(x^2-1)+2\sqrt((2x^2+8x+6)(x^2-1))=(2x+2)^2`
`<=>2(x+3)(x+1)+(x-1)(x+2)+2\sqrt((x+1)^2 (x+3)(x-1))=4(x+1)^2`
`<=> (x+1)[2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0`
`<=> [(x=-1\ (TM)),([2(x+3)+(x-1)+2\sqrt((x+3)(x-1))-4(x+1)]=0\ (1)):}`
(1) `<=> x-1=2\sqrt((x+3)(x-1))`
`<=>x^2-2x+1=4(x+3)(x-1)`
`<=>x=1\ `(TM)
Vậy `S={\pm 1}`.
\(ĐK:x\le-3;x\ge-1\)
\(PT\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\\ \Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(tm\right)\\\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2\left(x+3\right)+\left(x-1\right)+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\\ \Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\\ \Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-\dfrac{25}{7}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=1\)
Vậy \(S=\left\{-1;1\right\}\)
Giải PT: \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)