Cho a,b,c đôi một khác nhau thỏa mãn \(a+\frac{1}{a}=b+\frac{1}{b}=c+\frac{1}{c}=x.\)
Tính P=xabc
x là số thực và a,b,c là các số thực đôi một khác nhau và khác 0 thỏa mãn \(x=a+\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a}\)Tính xabc
Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Tính: a3+b3
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
1.Cho a, b, c đôi một khác nhau và khác 0 thỏa mãn
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=m\left(m>0\right)\)0)
Tính m
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
1.Cho a, b, c đôi một khác nhau và khác 0 thỏa mãn
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}=m\left(m>0\right).\)
Tính \(m\)
2. Cho x,y,z thỏa mãn x^3=3x-1;y^3=3y-1;z^3=3z-1
Tính A=x^2+y^2+z^2
3. Cho a+b+c=0 thỏa mãn \(\frac{x}{a}+\frac{y}{b}=\frac{x+y}{c}\). Chứng minh
\(xa^2+yb^2=\left(x+y\right).c^2\)
HELP ME!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Làm trước câu 3:
Ta có:
\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)
\(\Leftrightarrow1bcx+acy=abx+aby\)
\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)
Ta cần chứng minh
\(1xa^2+yb^2=\left(x+y\right)c^2\)
\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)
Vậy ta có ĐPCM
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Cho 3 số a,b,c khác nhau đôi một và khác 0,đồng thời thỏa mãn điều kiện \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
xét a + b + c = 0 khi đó a + b = -c ; b + c = -a ; a + c = -b
Ta có : \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=-1\)
xét a + b + c \(\ne\)0 . thì \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c;b+c=2a\)\(\Rightarrow a-c=2\left(c-a\right)\)\(\Rightarrow a=c\)( loại vì a khác c )
Vậy A = -1
Cho a,b,c là 3 số đôi một khác nhau và khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
Tính giá trị của biểu thức M=\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\)
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
Cho a,b,c la các số khác nhau đôi một và khác 0 thỏa mãn \(\frac{a}{1+ab}=\frac{b}{1+bc}=\frac{c}{1+ac}\)
Tính abc
Cho a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Hãy tính giá trị biểu thức\(P=\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
\(\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}\Leftrightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)
=> a= b =c
=> P = (1+1) ( 1+1)(1+1) = 2.2.2 =8