Ta có : \(a+\frac{1}{a}=b+\frac{1}{b}=c+\frac{1}{c}\)
=> \(\hept{\begin{cases}a+\frac{1}{a}=b+\frac{1}{b}\\b+\frac{1}{b}=c+\frac{1}{c}\end{cases}}\Rightarrow\hept{\begin{cases}a-b=\frac{1}{b}-\frac{1}{a}\\b-c=\frac{1}{c}-\frac{1}{b}\end{cases}}\Rightarrow\hept{\begin{cases}a-b=\frac{a-b}{ab}\\b-c=\frac{b-c}{bc}\end{cases}}\)
=> \(\hept{\begin{cases}\frac{a-b}{ab}-\left(a-b\right)=0\\\frac{b-c}{bc}-\left(b-c\right)=0\end{cases}\Rightarrow\hept{\begin{cases}\left(a-b\right)\left(\frac{1}{ab}-1\right)=0\\\left(b-c\right)\left(\frac{1}{bc}-1\right)=0\end{cases}}}\Rightarrow\hept{\begin{cases}\frac{1}{ab}-1=0\\\frac{1}{bc}-1=0\end{cases}}\)(Vì a ;b;c đôi một khác nhau)
=> \(\frac{1}{ab}=\frac{1}{bc}=1\Rightarrow ab=bc=1\Rightarrow ab-bc=0\Rightarrow b\left(a-c\right)=0\Rightarrow b=0\)
Khi đó P = x.a.b.c = x.a.0.c = 0
Vậy P = 0
nhưng bạn ơi, a,b,c khác 0 mà