Tổng tất cả các giá trị nguyên của m để phương trình \(x^2+\frac{4}{x^2}-4\left(x-\frac{2}{x}\right)+m-1=0\) có đúng 2 nghiệm lớn hơn 1 là...
tìm tất cả các giá trị thực của tham số m để phương trình
\(x^2+\frac{1}{x^2}-4\left(x-\frac{2}{x}\right)+m-1=0\)0
có đúng 2 nghiệm lớn hơn 1
Cho phương trình : \(x^4-2\left(m+1\right)x^2+m^2+m+2=0\) tìm tất cả các giá trị của m để phương trình có bốn nghiệm phân biệt lớn hơn -1
Cho phương trình \(x^4-2\left(m+1\right)x^2+m^2+m+2=0\) tìm tất cả giá trị của m để phương trình có 4 nghiệm lớn hơn -1
A. m>-2
B.m ∈∅
C. m≥1
D. m >2
Cho phương trình \(x^2-\left(m-2\right)x-8=0\), với m là tham số.
Tìm tất cả các giá trị của m để phương trình có hai nghiệm \(x_1,x_2\) sao cho biểu thức \(Q=\left(x^2_1-1\right)\left(x^2_2-4\right)\) có giá trị lớn nhất.
\(\Delta=\left(m-2\right)^2+8>0\) với mọi m . Vậy pt có 2 nghiệm phân biệt với mọi m
Do : \(x_1x_2=-8\) nên \(x_2=\dfrac{-8}{x1}\)
\(Q=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\dfrac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\dfrac{16}{x_1^2}\right)\le68-4.8=36\)
\(\left(x_1^2+\dfrac{16}{x_1^2}\ge8\right)\)\(;Q=36\) khi và chỉ khi x1 = ( 2 ; -2 )
có bao nhiêu giá trị nguyên của tham số m để phương trình
\(\left(x^2+\frac{1}{x^2}\right)-2m\left(x+\frac{1}{x}\right)+1=0\)0
có đúng 4 nghiệm
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Tất cả các giá trị của tham số m để phương trình \(mx^4-2\left(m-1\right)x^2+\left(m-1\right)m=0\) có một nghiệm là
\(đặt:x^2=t\ge0\)
\(\Rightarrow pt\Leftrightarrow m.t^2-2\left(m-1\right)t+\left(m-1\right)m=0\left(1\right)\)
\(với:m=0\Rightarrow\left(1\right)\Leftrightarrow-2\left(0-1\right)t=0\Leftrightarrow t=0\Rightarrow x=0\left(tm\right)\)
\(với:m\ne0\) pt đã cho có một nghiệm khi (1) có nghiệm duy nhất bằng 0 hoặc (1) có 1 nghiệm bằng 0 nghiệm còn lại âm
\(\Rightarrow\left[{}\begin{matrix}t=-\dfrac{b}{2a}=\dfrac{2\left(m-1\right)}{m}=0\Leftrightarrow m=1\left(tm\right)\\t1=0=>\left(1\right)\Leftrightarrow\left(m-1\right)m=0\Rightarrow m=0\left(ktm\right);m=1\left(tm\right)\end{matrix}\right.\)
từ 2TH trên \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt đã cho có 1 nghiệm
tìm tất cả các giá trị của m để bpt sau nghiệm đúng với mọi giá trị của x
\(\frac{-3x^2+5x-4}{\left(m-4\right)x^2+\left(1+m\right)x+2m-1}>0\)
Câu 1: Gọi M là tập hợp tất cả các giá trị nguyên của tham số m để phương trình \(-x^2+\left(2m-3\right)x-m^2+m+20=0\) có hai nhgieemj trái dấu. Tổng tất cả các phần tử của M bằng
A. 5 B. 4 C. 10 D. 15
Câu 2: Có tất cả bao nhiêu giá trị nguyên của tham số m nhỏ hơn 2022 để bất phương trình \(x^2-8x+m+20\ge0\) nghiệm đúng với mọi x ϵ [5; 10]?
A. 2027 B. 2028 C. 2062 D. 2063