Tìm x
a. \(\sqrt{3}\)x - \(\sqrt{27}\)= \(\sqrt{343}\)
b.\(\sqrt{2}\)\(^{x^2}\)- \(\sqrt{12}\)= 0
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)
a) \(\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x^2-2.x.3+3^2\right)}\)
\(=\sqrt{\left(x-3\right)^2}\) ≥0,∀x
⇒x∈\(R\)
b) \(\sqrt{x^2-2x+1}\)
\(=\sqrt{\left(x^2-2.x.1+1^2\right)}\)
\(=\sqrt{\left(x-1\right)^2}\) ≥0,∀x
⇒x∈\(R\)
Tìm x
a) \(x+1-2\sqrt{x+1}=0\)
b) \(2x-4-\sqrt{x-2}=0\)
c) \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20 \)
\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{3;-1\right\}\)
\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)
\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)
Vậy \(S=\left\{28\right\}\)
a) tính gtrị của biểu thức A = \(\sqrt{3}+\sqrt{12}-\sqrt{27}-\sqrt{36}\)
b) cho bt B = \(\dfrac{2}{\sqrt{x-1}}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x-5}}{\sqrt{x\left(\sqrt{x-1}\right)}}\) với x > 0 và x \(\ne\) 1 . rút gọn bt và tìm x để B = 2
\(a,\) ta có :
\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)
\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)
__________________________________________________________
\(b,\) với \(x>0\) và \(x\ne1\) . ta có :
\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)
vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)
để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
vậy để \(B=2\) thì \(x=4\)
Tìm x
a)\(2\sqrt{2}-\dfrac{1}{2}.\sqrt{x}=0\)
b)\(2.\sqrt{x}-\sqrt{\dfrac{x}{3}}=1\)
c)\(4.\sqrt{x}+\sqrt{\dfrac{x}{2}}=\dfrac{1}{3}\)
a: Ta có: \(2\sqrt{2}-\dfrac{1}{2}\cdot\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\cdot\dfrac{1}{2}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x}=4\sqrt{2}\)
hay x=32
b: Ta có: \(2\sqrt{x}-\sqrt{\dfrac{x}{3}}=1\)
\(\Leftrightarrow2\sqrt{x}-\dfrac{\sqrt{3}}{3}\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x}=\dfrac{6+\sqrt{3}}{11}\)
hay \(x=\dfrac{39+12\sqrt{3}}{121}\)
c: Ta có: \(4\sqrt{x}+\sqrt{\dfrac{x}{2}}=\dfrac{1}{3}\)
\(\Leftrightarrow4\sqrt{x}+\dfrac{\sqrt{2}}{2}\sqrt{x}=\dfrac{1}{3}\)
\(\Leftrightarrow\sqrt{x}=\dfrac{8-\sqrt{2}}{93}\)
hay \(x=\dfrac{66-16\sqrt{2}}{8649}\)
a.\(\sqrt{2}.x-\sqrt{50}=0\)
b.\(\sqrt{3}.x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
c.\(\sqrt{3}.x^2-\sqrt{12}=0\)
d.\(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\)
a) \(\sqrt{2}\cdot x-\sqrt{50}=0< =>\sqrt{2}\cdot x=\sqrt{50}\)
<=> x= 5
b) \(\sqrt{3}\cdot x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot\sqrt{4}+\sqrt{3}\cdot\sqrt{9}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot5< =>x+1=5\)
<=> x=4
c) \(\sqrt{3}\cdot x^2-\sqrt{12}=0\\ < =>x^2=\sqrt{4}=2;-2\\ < =>x=\sqrt{2};-\sqrt{2}\)
d) \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\\ < =>x^2=\sqrt{100}=10;-10\\ < =>x=\sqrt{10};-\sqrt{10}\)
Giải phương trình:
a. \(\sqrt{2}.x-\sqrt{50}=0;\) b. \(\sqrt{3}.x+\sqrt{3}=\sqrt{12}+\sqrt{27};\)
c. \(\sqrt{3}.x^2-\sqrt{12}=0;\) d. \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0.\)
a, \(\sqrt{2}x-\sqrt{50}=0\Leftrightarrow\sqrt{2}x-5\sqrt{2}=0\Leftrightarrow\sqrt{2}\left(x-5\right)=0\Leftrightarrow x=5\)
b, \(\sqrt{3}x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}\left(x+1\right)=5\sqrt{3}\Leftrightarrow x+1=5\Leftrightarrow x=4\)
c, \(\sqrt{3}x^2-\sqrt{12}=0\Leftrightarrow\sqrt{3}\left(x^2-2\right)=0\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
d, \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{1}{\sqrt{5}}\left(x^2-10\right)=0\Leftrightarrow x^2-10=0\Leftrightarrow x=\pm\sqrt{10}\)
a) √2.x - √50 = 0 √2.x = √50 x =
x = = √25 = 5.
b) ĐS: x = 4.
c) √3. - √12 = 0 √3. = √12 = =
= √4 = 2 x = √2 hoặc x = -√2.
d) ĐS: x = √10 hoặc x = -√10.
a) \(\sqrt{2}.x-\sqrt{50}=0\Leftrightarrow\sqrt{2}\left(x-\sqrt{25}\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
b) \(\sqrt{3}.x+\sqrt{3}=\sqrt{12}+\sqrt{27}\Leftrightarrow\sqrt{3}\left(x+1\right)=\sqrt{3}\left(\sqrt{4}+\sqrt{9}\right)\Leftrightarrow x+1=2+3\Leftrightarrow x=4\)
c) \(\sqrt{3}.x^2-\sqrt{12}=0\Leftrightarrow\sqrt{3}\left(x^2-\sqrt{4}\right)=0\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm\sqrt{2}\)
d) \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{x^2}{\sqrt{5}}=\sqrt{20}\Leftrightarrow x^2=10\Leftrightarrow x=\pm\sqrt{10}\)
tìm x biết a,\(\sqrt{x^2-4x+4}=7\) b,\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\sqrt{9x+27}=6\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
1) Tính giá trị biểu thức:
a)A=\(\sqrt{4+2\sqrt{3}}\)
b) B=\(\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)
2) Giai phương trình: \(\sqrt{4x-12}+\sqrt{x-3}-\dfrac{1}{3}\sqrt{9x-27}=8\)
3)Tìm x: 2x2-4=8
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
Tìm x
\(\sqrt{3}x-\sqrt{27=\sqrt{343}}\)
Bài làm:
Ta có: \(\sqrt{3}x-\sqrt{27}=\sqrt{343}\)
\(\Leftrightarrow\left(x-3\right)\sqrt{3}=7\sqrt{7}\)
\(\Leftrightarrow x-3=\frac{7\sqrt{21}}{3}\)
\(\Rightarrow x=\frac{9+7\sqrt{21}}{3}\)