x ∈ ƯC( 72, 90)
Phần 1: Trắc nghiệm
Câu 1: Đặt ƯCLN(90, 135, 270) = x. Khi đó giá trị của x là:
A. 90 B. 5 C. 9 D. 45
Câu 2: Kết luận nào sau đây là khẳng định đúng?
A. ƯC(180,234) = Ư(18) B. ƯC(180, 234) = Ư(90)
C. ƯC(180,234) = Ư(36) D. C. ƯC(180,234) = Ư(72)
Câu 3: Đặt BCNN(27, 315) = y. Khi đó giá trị của y là:
A. y = 9 B. y = 945 C. y = 135 D. y = 189
Câu 4: Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12?
A. 6 B. 7 C. 8 D. 9
Phần 2: Một số dạng toán vận dụng
Câu 5: Một lớp có 27 học sinh nam và 18 học sinh nữ. Có bao nhiêu cách chia lớp đó thành các tổ sao
cho số học sinh nam và học sinh nữ ở mỗi tổ là như nhau? Cách chia nào để mỗi tổ có số học sinh ít
nhất?
Câu 6: Trong một đợt trồng cây, học sinh của lớp 6B đã trồng được một số cây. Số đó là số tự nhiên
nhỏ nhất thỏa mãn chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9. Hỏi học sinh lớp 6B đã trồng
được bao nhiêu cây?
Câu 7: Tìm số tự nhiên nhỏ nhất sao cho số đó chia cho 3 dư 2, chia cho 5 dư 3, chia cho 7 dư 4.
Phần 2
Câu 5:
Gọi x (tổ) là số tổ có thể chia (x ∈ ℕ*)
⇒ x ∈ ƯC(27; 18)
Ta có:
27 = 3³
18 = 2.3²
⇒ ƯCLN(27; 18) = 3² = 9
⇒ x ∈ ƯC(27; 18) = Ư(9) = {1; 3; 9}
Vậy có 3 cách chia tổ là: 1 tổ; 3 tổ và 9 tổ
Để mỗi tổ có số học sinh ít nhất thì số tổ là lớn nhất là 9 tổ
Phần 2
Câu 6
Gọi x (cây) là số cây cần tìm (x ∈ ℕ*)
Do số cây là nhỏ nhất và khi chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9 nên x + 1 = BCNN(3; 4; 5; 10)
Ta có:
3 = 3
4 = 2²
5 = 5
10 = 2.5
⇒ x + 1 = BCNN(3; 4; 5; 10) = 2².3.5 = 60
⇒ x = 60 - 1 = 59
Vậy số cây cần tìm là 59 cây
Phần 2
Câu 7
Gọi x là số cần tìm (x ∈ ℕ*)
Do x chia 3 dư 2
⇒ x - 2 ∈ B(3) = {0; 3; 6; 9; ...}
⇒ x ∈ {2; 5; 8; 11; 14; 17; 20; 23; ...; 50; 53; ...}
Do x chia 5 dư 3
⇒ x - 3 ∈ B(5) = {0; 5; 10; 15; 20; ...}
⇒ x ∈ {3; 8; 13; 18; 23; ...; 48; 53; ...}
Do x chia 7 dư 4
⇒ x - 4 ∈ B(7) = {0; 7; 14; 21; 28; ...}
⇒ x ∈ {4; 11; 18; 25; 32; 39; 46; 53; ...}
⇒ x = 53
Vậy số cần tìm là 53
Phần 1: Trắc nghiệm
Câu 1: Đặt ƯCLN(90, 135, 270) = x. Khi đó giá trị của x là:
A. 90 B. 5 C. 9 D. 45
Câu 2: Kết luận nào sau đây là khẳng định đúng?
A. ƯC(180,234) = Ư(18) B. ƯC(180, 234) = Ư(90)
C. ƯC(180,234) = Ư(36) D. C. ƯC(180,234) = Ư(72)
Câu 3: Đặt BCNN(27, 315) = y. Khi đó giá trị của y là:
A. y = 9 B. y = 945 C. y = 135 D. y = 189
Câu 4: Có bao nhiêu số tự nhiên có ba chữ số là bội chung của 11 và 12?
A. 6 B. 7 C. 8 D. 9
Câu 1:
Ta có:
\(90=2\cdot3^2\cdot5\)
\(135=3^3\cdot5\)
\(270=2\cdot5\cdot3^3\)
\(\Rightarrow x=ƯCLN\left(90;135;270\right)=3^2\cdot5=45\)
Chọn đáp án D
Câu 3:
Ta có:
\(27=3^3\)
\(315=3^2\cdot5\cdot7\)
\(\Rightarrow y=BCNN\left(27;315\right)=3^3\cdot5\cdot7=945\)
Chọn phương án B
Câu 4: Ta có:
\(BCNN\left(11;12\right)=132\)
\(\Rightarrow BC\left(11;12\right)=\left\{0;132;264;396;528;660;792;924;...\right\}\)
Vậy có 7 số có 3 chữ số là bội chung của 11 và 12
Chọn phương án B
Câu 2:
Ta có:
A. \(ƯC\left(180;243\right)\) (đúng)
B. \(ƯC\left(180,234\right)=Ư\left(90\right)\) (sai)
C. \(ƯC\left(180;234\right)=Ư\left(36\right)\) (sai)
D. \(ƯC\left(180;234\right)=Ư\left(72\right)\) (sai)
Chọn phương án A
hãy tìm ƯCLN rồi tìm ƯC của các số sau
a. 72 và 90
b. 200,245 và 125
a. 72 = 23 . 32
90 = 2. 32 . 5
⇒ƯCLN ( 72, 90 ) = 2 . 32 = 18.
⇒ƯCLN ( 72, 90 ) = Ư( 18 ) = { 1 ; 2; 3; 6; 9 ; 18 }
b 200 = 23 . 52
245 = 5 . 72
125 = 53
⇒ ƯCLN ( 200 ,245 , 125 ) = 5.
⇒ ƯCLN ( 200 , 245 , 125 ) = Ư( 5 ) = { 1 ; 5 }
A)
72 và 90
Ta có:72=23.32;90=2.32.5
ƯCLN(72:90)=2.32=18
ƯC(72;90)=Ư(18)={1;2;3;6;9;18}
B)
200,245 và 125
Ta có:200=23.52;245=5.72;125=53
ƯCLN(200;245;125)=5
ƯC(200;245;125)=Ư(5)={1;5}
a. 72 = 23 . 32
90 = 2. 32 . 5
ƯCLN ( 72, 90 ) = 2 . 32 = 18.
⇔ƯCLN ( 72, 90 ) = Ư( 18 ) = { 1 ; 2; 3; 6; 9 ; 18 }
b 200 = 23 . 52
245 = 5 . 72
125 = 53
ƯCLN ( 200 ,245 , 125 ) = 5.
⇔ƯCLN ( 200 , 245 , 125 ) = Ư( 5 ) = { 1 ; 5 }
Tìm các Số tự nhiên x, sao cho:
a) x ∈ B ( 13 ) v à 20 < x < 90 ;
b) x ⋮ 10 ; 12 < x < 72 ;
c) x ∈ Ư ( 54 ) ; x > 8 ;
d) 35 ⋮ x ; x 10 ;
e) x = Ư C L N ( 64 , 48 , 88 ) ;
f) x ∈ Ư C ( 15 , 20 ) ; x > 4 .
Tìm ƯCLN rồi tìm ƯC của các số sau:
a) 54 và 48
b) 45 và 60
c) 48, 72, 90
d) 56, 84, 140
a) 54=2.33; 48=23.6 b)45=5.32 ; 60=22.3.5 c)48=24.3 ; 72=22.32 ;90=2.32.5
TSNT chung:2 TSNT chung:3;5 TSNT chung:2;3
ƯCLN(54;48)=2=2 ƯCLN(45;60)=3.5=15 ƯCLN(48;72;90)=2.3=6
ƯC(54;48)=Ư(2)={1;2} ƯC(45;60)=Ư(15)={1;3;5;15} ƯC(48;72;60)=Ư(6)={1;2;3;6}
Tìm các tập hợp sau:
a) ƯC(8, 12) b) ƯC(12,15,30)
c) ƯC(60; 72) d) ƯC(24; 42)
\(ƯC\left(8,12\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(ƯC\left(12;15;30\right)=\left\{\pm1;\pm3\right\}\)
\(ƯC\left(60;72\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
\(ƯC\left(24;42\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Tìm các tập hợp sau:
a) ƯC(8, 12) b) ƯC(12,15,30)
c) ƯC(60; 72) d) ƯC(24; 42)
a) { 1; 2; 4 }
b) { 1; 3 }
c) { 1; 2; 3; 4; 6; 12 }
d) { 1; 2; 3; 6 }
Tìm các tập hợp sau:
a) ƯC(8, 12) b) ƯC(12,15,30)
c) ƯC(60; 72) d) ƯC(24; 42)
Ý bn là tìm phần tử à:
a, ƯC(8;12)= ƯCLN (8;12)
Ta có: 8= 23 và 12 = 22.3
\(\Rightarrow\)ƯCLN(8;12)= 22= 4
\(\Rightarrow\)ƯC (8;12)= Ư(4)= {1;2;4}
b, ƯC (12;15;30)= ƯCLN (12;15;30)
Ta có: 12= 22.3
15= 3.5
30= 3.2.5
\(\Rightarrow\)ƯCLN (12;15;30)= 2.3= 6
\(\Rightarrow\)ƯC (12;15;30)= Ư(6)= {1;2;3;6}
c, ƯC (60;72)= ƯCLN (60;72)
Ta có: 60= 22.3.5 và 72= 23.32
\(\Rightarrow\)ƯCLN (60;72)= 22= 4
\(\Rightarrow\)ƯC(60;72)= Ư(4)= {1;2;4}
d, ƯC (24;42)= ƯCLN (24;42)
Ta có: 24= 23.3 và 42= 2.3.7
\(\Rightarrow\)ƯCLN (24;42)= 3
\(\Rightarrow\)ƯC (24;42)= Ư(3)= {1;3}
Chúc bn học tốt
Bài toán 3 : Tìm UCLN. a) ƯCLN ( 10 ; 28) e) ƯCLN (24 ; 84 ; 180) b) ƯCLN (24 ; 36) g) ƯCLN (56 ; 140) c) ƯCLN (16 ; 80 ; 176) h) ƯCLC (12 ; 14 ; 8 ; 20) d) ƯCLN (6 ; 8 ; 18) k) ƯCLN ( 7 ; 9 ; 12 ; 21)
Bài toán 4 : Tìm ƯC. a) ƯC(16 ; 24) e) ƯC(18 ; 77) b) ƯC(60 ; 90) g) ƯC(18 ; 90) c) ƯC(24 ; 84) h) ƯC(18 ; 30 ; 42) d) ƯC(16 ; 60) k) ƯC(26 ; 39 ; 48)
Bài toán 5 : Tìm BCNN của. a) BCNN( 8 ; 10 ; 20) f) BCNN(56 ; 70 ; 126) b) BCNN(16 ; 24) g) BCNN(28 ; 20 ; 30) c) BCNN(60 ; 140) h) BCNN(34 ; 32 ; 20) d) BCNN(8 ; 9 ; 11) k) BCNN(42 ; 70 ; 52) e) BCNN(24 ; 40 ; 162) l) BCNN( 9 ; 10 ; 11)
Bài toán 6 : Tìm bội chung (BC) của. a) BC(13 ; 15) e) BC(30 ; 105) b) BC(10 ; 12 ; 15) g) BC( 84 ; 108) c) BC(7 ; 9 ; 11) h) BC(98 ; 72 ; 42) d) BC(24 ; 40 ; 28) k) BC(68 ; 208 ; 100)
Please
GIúp Mình với
bạn nên chia nhỏ đề bài ra
cái này dễ mak bn ơi,bn đăng
từng bài một mn sẽ giải chứ
bn đăng như này chưa chắc
đã cs ng giải cho bn
nhìn cái này chắc loạn thị luôn ak