Những câu hỏi liên quan
như phạm
Xem chi tiết
Nguyệt
2 tháng 12 2018 lúc 21:46

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

Nguyệt
2 tháng 12 2018 lúc 21:51

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

như phạm
3 tháng 12 2018 lúc 0:03

Thanks. <3

Universe
Xem chi tiết
luuthianhhuyen
27 tháng 12 2018 lúc 10:55

\(A=\frac{x^2-3x+4}{\left(x-1\right)^2}=\frac{x^2+x-4x+4}{\left(x-1\right)^2}=\frac{x\left(x+1\right)+4\left(x+1\right)}{\left(x+1\right)^2}=\frac{\left(x+1\right)\left(x+4\right)}{\left(x+1\right)^2}=\frac{x+4}{x+1}\)

Nguyệt
27 tháng 12 2018 lúc 11:03

ĐKXĐ: x khác 1

\(A=\frac{x^2-3x+4}{x^2-2x+1}=\frac{x^2-2x+1-x+1+2}{x^2-2x+1}=1+\frac{-\left(x-1\right)}{\left(x-1\right)^2}+\frac{2}{\left(x-1\right)^2}\)

\(=1+\frac{-1}{x-1}+\frac{1}{\left(x-1\right)^2}+\frac{1}{\left(x-1\right)^2}\)

đặt \(m=\frac{1}{x-1}\Rightarrow A=1+-m+2m^2=2.\left(m^2-\frac{m.1}{2}+\frac{1}{16}\right)+\frac{7}{8}\)

\(A=2.\left(m-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

dấu = xảy ra khi \(m-\frac{1}{4}=0\)

\(\Rightarrow m=\frac{1}{4}=\frac{1}{x-1}\Rightarrow x=5\)

p/s: ko chắc lắm, 60% thôi >:

Nguyệt
27 tháng 12 2018 lúc 11:09

lỗi:

dòng thứ 4: \(1+\left(-m\right)\)quên dấu ngoặc =.=

thiếu kết luận. Vậy MinA\(=\frac{7}{8}\Leftrightarrow x=5\)

sorry :(

Hoang Yen Pham
Xem chi tiết
Hoang Yen Pham
Xem chi tiết
Ami Mizuno
17 tháng 7 2021 lúc 9:55

Tứ Đại KAGE
Xem chi tiết
qww qwele dlab
6 tháng 8 2017 lúc 9:03

âm vô hạn

Tứ Đại KAGE
6 tháng 8 2017 lúc 9:09

la bao nhiêu

ĐA -GAMING
Xem chi tiết
ĐA -GAMING
2 tháng 2 2017 lúc 21:01

Giúp mình với nhé

Đinh Đức Hùng
2 tháng 2 2017 lúc 21:08

Ta có :

|x - 2| + |2x + 3| ≥ |x - 2 + 2x + 3| = |3x + 1|

=> A ≥ |3x + 1| + |3x - 4| = |3x + 1| + |4 - 3x|

A ≥ |3x + 1 + 4 - 3x| = 5

Dấu "=" xảy ra khi (3x + 1)(4 - 3x) ≥ 0 <=> - 1/3 ≤ x ≤ 4/3

Vậy GTNN của A là 5 <=> - 1/3 ≤ x ≤ 4/3

Ác Quỷ
Xem chi tiết
Yeutoanhoc
13 tháng 6 2021 lúc 20:51

`a)A=-x^2+x+1`

`=-(x^2-x)+1`

`=-(x^2-2.x. 1/2+1/4-1/4)+1`

`=-(x-1/2)^2+5/4<=5/4`

Dấu "=" xảy ra khi `x-1/2=0<=>x=1/2`

`b)B=x^2+3x+4`

`=x^2+2.x. 3/2+9/4+7/4`

`=(x-3/2)^2+7/4>=7/4`

Dấu "=" xảy ra khi `x-3/2=0<=>x=3/2`

`c)=x^2-11x+30`

`=x^2-2.x. 11/2+121/4-1/4`

`=(x-11/2)^2-1/4>=-1/4`

Dấu "=" xảy ra khi `x+1/4=0<=>x=-1/4`

piojoi
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 7 2023 lúc 21:55

a: |3x-1|>=0

=>2|3x-1|>=0

=>2|3x-1|-4>=-4

Dấu = xảy ra khi x=1/3

b: |2-x|>=0

=>|2-x|+1,5>=1,5

Dấu = xảy ra khi x=2

Trần Minh Anh
Xem chi tiết
Lightning Farron
27 tháng 8 2016 lúc 13:43

A=3x2-x+4

\(=3\left(x^2-\frac{x}{3}+\frac{4}{3}\right)\)

\(=3\left(x-\frac{1}{6}\right)^2+\frac{47}{12}\ge0+\frac{47}{12}=\frac{47}{12}\)

Dấu = khi \(x=\frac{1}{6}\)

Vậy MinA=\(\frac{47}{12}\Leftrightarrow x=\frac{1}{6}\)

 

 

 

Lightning Farron
27 tháng 8 2016 lúc 13:48

B=(x-2)(x-5)(x2-7x-10)

=(x2-7x+10)(x2-7x-10)

Đặt t=x2-7x+10 đc:

B=t(t-20)=t2-20t

=t2-20t+100-100

=(t-10)2-100

Thay t=x2-7x+10 ta đc: 

\(B=\left(x^2-7x+10-10\right)-100\ge0-100=-100\)

\(\Rightarrow B\ge-100\)

Dấu = khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)

Vậy MinB=-100 khi \(\left[\begin{array}{nghiempt}x=0\\x=7\end{array}\right.\)