tính: \(\sqrt{3+\sqrt{ }8}\)
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
Tính D= |sqrt(8)-3|+|sqrt(19)-4|-(sqrt(19)-sqrt(8))
\(D=\left|\sqrt{8}-3\right|+\left|\sqrt{19}-4\right|-\left(\sqrt{19}-\sqrt{8}\right)\)
\(D=\left(3-2\sqrt{2}\right)+\sqrt{19}-4-\left(\sqrt{19}-\sqrt{8}\right)\)
\(D=\left(3-2\sqrt{2}\right)+\sqrt{19}-4-\left(\sqrt{19}-2\sqrt{2}\right)\)
\(D=-2\sqrt{2}+3+\sqrt{19}-4-\left(\sqrt{19}-2\sqrt{2}\right)\)
\(D=-2\sqrt{2}+3+\sqrt{19}-4-\sqrt{19}+2\sqrt{2}\)
\(D=-2\sqrt{2}+3-4+2\sqrt{2}\)
\(D=3-4\)
\(D=-1\)
Tính : \(\sqrt{3+\sqrt{8}}.\left(1-\sqrt{3+\sqrt{8}}\right)\)
tính ;\(\sqrt{2-\sqrt[3]{3+\sqrt[4]{4-\sqrt[5]{5+\sqrt[6]{6-\sqrt[7]{7+\sqrt[8]{8-\sqrt[9]{9}}}}}}}}\)
Mình dùng máy casio nhé bạn.
KQ; 0,6151214812.
Bạn có cần cách làm không?
Tính: \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}=\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{\sqrt{6}-\sqrt{2}}}.\sqrt{\sqrt{6}+\sqrt{2}}\)
\(=\sqrt{\sqrt{6}-\sqrt{2}}.\sqrt{\sqrt{6}+\sqrt{2}}=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}\)
\(=\sqrt{4}=2\)
Ta có: \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{\sqrt{6}-\sqrt{2}}}\cdot\sqrt{\sqrt{6}+\sqrt{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{6}-\sqrt{2}\right)^2}{\sqrt{6}-\sqrt{2}}}\cdot\sqrt{\sqrt{6}+\sqrt{2}}\)
=4
tính
\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
√8√3 + 2√25√12 - 4√192
= √2.√4.√3 + 2.5.√4.√3 - 4.√16.√4.√3
= 2√6 + 10.√12 - 16.√12
= 2√6 - 6√12
= 2√6 - 6.√4.√3
= 2√6 - 6.2.√3
= 2√6 - 12√3
Tính:
\(\sqrt{33+8\sqrt{2}}-\sqrt{33-8\sqrt{2}}\)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}-\sqrt{6}\)
\(\left(\sqrt{33+8\sqrt{2}}\right)-\left(\sqrt{33-8\sqrt{2}}\right)\)
\(=\left[\sqrt{33+8\sqrt{2}}-\left(\sqrt{33-8\sqrt{2}}\right)\right]^2\)
\(=33+8\sqrt{2}+33-8\sqrt{2}-2\sqrt{\left(33+8\sqrt{2}\right)\left(33-8\sqrt{2}\right)}\)
\(=66-62\)
\(=4\)
Tính giá trị các biểu thức:
a.\(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\sqrt{3}\)
b.\(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
c.\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)3\sqrt{6}\)
d.\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
d,Ta có:\(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\sqrt{75\sqrt{2}}+5\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=15\sqrt{3\sqrt{2}}+20\sqrt{3\sqrt{2}}-16\sqrt{3\sqrt{2}}\)
\(=19\sqrt{3\sqrt{2}}\)
40.A=\(\dfrac{2-5\sqrt{x}}{\sqrt{x}+1}\)
a. Tính giá trị của biểu thức A khi x=\(\sqrt{19+8\sqrt{3}}+\sqrt{19-8\sqrt{3}}\)
a: \(x=4+\sqrt{3}+4-\sqrt{3}=8\)
Khi x=8 thì \(A=\dfrac{2-5\cdot2\sqrt{2}}{2\sqrt{2}+1}=\dfrac{2-10\sqrt{2}}{2\sqrt{2}+1}=-6+2\sqrt{2}\)
tính :\(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)