Tính: \(a.I=\int\frac{x}{\left(x^4-4\right)^2}dx\)
\(b.J=\lim\limits_{x\rightarrow0}\left(\cos x\right)_x\frac{1}{2}\)
Bài 1
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}\)
b. \(\lim\limits_{x\rightarrow1}\frac{x^6-5x^5+x}{\left(1-x\right)^2}\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)\left(1+3x\right)-1}{x}\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+x\right)}{x^5+x^2}\)
Bài 2
a. \(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}\)
b. \(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}\left(n\in Z^+,a\ne0\right)\)
c. \(\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)-1}{x}\)
Bài 1:
\(a=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\lim\limits_{x\rightarrow-1}\frac{x^4-x^3+x^2-x+1}{x^2-x+1}=\frac{5}{3}\)
\(b=\frac{1-5+1}{0}=\frac{-3}{0}=-\infty\)
\(c=\lim\limits_{x\rightarrow1}\frac{x\left(1+2x\right)\left(1+3x\right)+2x\left(1+3x\right)+3x}{x}=\lim\limits_{x\rightarrow1}\left[\left(1+2x\right)\left(1+3x\right)+2\left(1+3x\right)+3\right]=1+2+3=6\)
\(d=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-1}{5x^4+2x}=\frac{4}{0}=+\infty\)
Bài 2:
\(a=\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(b=\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)
\(c=\lim\limits_{x\rightarrow0}\frac{x+x^2+...+x^n-n}{x-1}=\frac{-n}{-1}=n\)
\(\left(1+x\right)\left(1+2x\right)...\left(1+nx\right)=x\left(1+2x\right)...\left(1+nx\right)+\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)\)
\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+\left(1+3x\right)...\left(1+nx\right)\)
\(=...\)
\(=x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx+1\)
\(\Rightarrow\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)...\left(1+nx\right)-1}{x}\)
\(=\lim\limits_{x\rightarrow0}\frac{x\left(1+2x\right)...\left(1+nx\right)+2x\left(1+3x\right)...\left(1+nx\right)+...+nx}{x}\)
\(=\lim\limits_{x\rightarrow0}\left[\left(1+2x\right)...\left(1+nx\right)+2\left(1+3x\right)...\left(1+nx\right)+...+n\right]\)
\(=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)
a. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)\left(1+3x\right)-1}{x}\)
b. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}\)
\(a=\lim\limits_{x\rightarrow0}\frac{3x\left(1+x\right)\left(1+2x\right)}{x}+\lim\limits_{x\rightarrow0}\frac{2x\left(1+x\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)-1}{x}\)
\(=\lim\limits_{x\rightarrow0}3\left(1+x\right)\left(1+2x\right)+\lim\limits_{x\rightarrow0}2\left(1+x\right)+1=3+2+1=6\)
\(b=\lim\limits_{x\rightarrow0}\frac{\left(x^5+5x^4+10x^3+10x^2+5x+1\right)-\left(1+5x\right)}{x^5+x^2}\)
\(=\lim\limits_{x\rightarrow0}\frac{x^2\left(x^3+5x^2+10\right)}{x^2\left(x^3+1\right)}=\lim\limits_{x\rightarrow0}\frac{x^3+5x^2+10}{x^3+1}=10\)
Tìm các giới hạn sau :
A=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
B=\(\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}\)
C=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}-1}{x}\)
D=\(\lim\limits_{x\rightarrow0}\frac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
E=\(\lim\limits_{x\rightarrow0}\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)
Giup mình vớiii
\(A=\lim\limits_{x\rightarrow0}\frac{\left(x+1\right)^{\frac{1}{3}}-1}{\left(2x+1\right)^{\frac{1}{4}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{1}{3}\left(x+1\right)^{-\frac{2}{3}}}{\frac{1}{2}\left(2x+1\right)^{-\frac{3}{4}}}=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3}\)
\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}\sqrt{x-2}}{\sqrt[4]{2x+2}-2}=\frac{3\sqrt{5}}{0}=+\infty\)
\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt{\left(3x+1\right)\left(4x+1\right)}\left(\sqrt{2x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}\left(\sqrt{3x+1}-1\right)}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt{4x+1}-1}{x}\)
Xét \(\lim\limits_{x\rightarrow0}\frac{\sqrt{ax+1}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\left(ax+1\right)^{\frac{1}{2}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{2}\left(ax+1\right)^{-\frac{1}{2}}}{1}=\frac{a}{2}\)
\(\Rightarrow C=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}=\frac{9}{2}\)
\(D=\lim\limits_{x\rightarrow0}\frac{\left(1+4x\right)^{\frac{1}{2}}-\left(1+6x\right)^{\frac{1}{3}}}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\left(1+4x\right)^{-\frac{1}{2}}-2\left(1+6x\right)^{-\frac{2}{3}}}{2x}\)
\(D=\lim\limits_{x\rightarrow0}\frac{-2\left(1+4x\right)^{-\frac{3}{2}}+4\left(1+6x\right)^{-\frac{5}{3}}}{1}=-2+4=2\)
\(E=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-\left(1+bx\right)^{\frac{1}{n}}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}-\frac{b}{n}\left(1+bx\right)^{\frac{1-n}{n}}}{1}=\frac{a-b}{n}\)
\(B=\lim\limits_{x\rightarrow7}\frac{\sqrt[3]{4x-1}-\sqrt{x+2}}{\sqrt[4]{2x+2}-2}=\lim\limits_{x\rightarrow7}\frac{\left(4x-1\right)^{\frac{1}{3}}-\left(x+2\right)^{\frac{1}{2}}}{\left(2x+2\right)^{\frac{1}{4}}-2}\)
\(B=\lim\limits_{x\rightarrow7}\frac{\frac{4}{3}\left(4x-1\right)^{-\frac{2}{3}}-\frac{1}{2}\left(x+2\right)^{-\frac{1}{2}}}{\frac{1}{2}\left(2x+2\right)^{-\frac{3}{4}}}=\lim\limits_{x\rightarrow7}\frac{\frac{4}{3\sqrt[3]{\left(4x-1\right)^2}}-\frac{1}{2\sqrt{x+2}}}{\frac{1}{2}\sqrt[4]{\left(2x+2\right)^3}}\)
\(=\frac{\frac{4}{3\sqrt[3]{27^2}}-\frac{1}{2\sqrt{9}}}{\frac{1}{2}\sqrt[4]{16^3}}=-\frac{1}{216}\)
1, \(\lim\limits_{x\rightarrow1}\frac{2x^2-3x+1}{x^3-x^2-x+1}\)
2, \(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)
3, \(\lim\limits_{x\rightarrow0}\frac{1-\sqrt[3]{x-1}}{x}\)
4, \(\lim\limits_{x\rightarrow-\infty}\frac{x^2-5x+1}{x^2-2}\)
5, \(\lim\limits_{x\rightarrow+\infty}\frac{2x^2-4}{x^3+3x^2-9}\)
6, \(\lim\limits_{x\rightarrow2^-}\frac{2x-1}{x-2}\)
7, \(\lim\limits_{x\rightarrow3^+}\frac{8+x-x^2}{x-3}\)
8, \(\lim\limits_{x\rightarrow-\infty}\left(8+4x-x^3\right)\)
9, \(\lim\limits_{x\rightarrow-1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}\)
10, \(\lim\limits_{x\rightarrow-\infty}\frac{\left(2x^2+1\right)^2\left(5x+3\right)}{\left(2x^3-1\right)\left(x+1\right)^2}\)
11, \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x}}{x+3}\)
12, \(\lim\limits_{x\rightarrow1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
13, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}+\sqrt{x+4}-3}{x}\)
14, \(\lim\limits_{x\rightarrow0}\frac{\left(x^2+2020\right)\sqrt{1+3x}-2020}{x}\)
15, \(\lim\limits_{x\rightarrow+\infty}\left(2x-\sqrt{4x^2-3}\right)\)
16, \(\lim\limits_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)
17, \(\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)
18, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2-2x}{8-x^3}\\\frac{x^4-16}{x-2}\end{matrix}\right.\) khi x>2,khi x<2 tại x=2
Bài 2:
\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)
Bài 3:
\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)
\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)
Bài 4:
\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)
Bài 5:
\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)
Bài 6:
\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)
Bài 7:
\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)
Bài 8:
\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)
Bài 9:
\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)
\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)
Bài 1:
\(\lim\limits_{x\to1+}\frac{2x^2-3x+1}{x^3-x^2-x+1}=\lim\limits_{x\to1+}\frac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=\lim\limits_{x\to1+}\frac{2x-1}{x^2-1}\)
\(\lim\limits_{x\to 1+}\frac{1}{x^2-1}.\lim\limits_{x\to 1+}(2x-1)=1.(+\infty)=+\infty \)
Tương tự \(\lim\limits_{x\to 1-} \frac{2x^2-3x+1}{x^3-x^2-x+1}=-\infty \)
Tìm các giới hạn sau:
C=\(\lim\limits_{x\rightarrow0}\frac{\left(3x+1\right)^3-\left(1-4x\right)^4}{x}\)
D=\(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)\left(1+3x\right)-1}{x}\)
\( C = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {3x + 1} \right)}^3} - {{\left( {1 - 4x} \right)}^4}}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {3x + 1} \right)}^3} - 1}}{x} - \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {1 - 4x} \right)}^4} - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{3x\left[ {{{\left( {3x + 1} \right)}^2} + \left( {3x + 1} \right) + 1} \right]}}{x} - \mathop {\lim }\limits_{x \to 0} \dfrac{{ - 4x\left( {2 - 4x} \right)\left[ {{{\left( {1 - 4x} \right)}^2} + 1} \right]}}{x}\\ = \mathop {\lim }\limits_{x \to 0} 3\left[ {{{\left( {3x + 1} \right)}^2} + \left( {3x + 1} \right) + 1} \right] + \mathop {\lim }\limits_{x \to 0} 4\left( {2 - 4x} \right)\left[ {{{\left( {1 - 4x} \right)}^2} + 1} \right] = 25 \)
\( D = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 + x} \right)\left( {1 + 2x} \right)\left( {1 + 3x} \right) - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{\left( {1 + 2x + x + 2{x^2}} \right)\left( {1 + 3x} \right) - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{{{\left( {1 + 3x + 2x} \right)}^2}\left( {1 + 3x} \right) - 1}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{6x + 11{x^2} + 6{x^3}}}{x}\\ = \mathop {\lim }\limits_{x \to 0} \dfrac{{x\left( {6 + 11x + 6{x^2}} \right)}}{x}\\ = \mathop {\lim }\limits_{x \to 0} 6 + 11x + 6{x^2} = 6 \)
\\(\\lim\\limits_{x\\rightarrow-\\infty}\\left(2x^3-x^2+3x-5\\right)\\)
\n\n\\(\\lim\\limits_{x\\rightarrow2}\\frac{3}{\\left(x-2\\right)\\left(x^2-3x+2\\right)}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow0}\\frac{x^2-5}{x^5+x^4}\\)
\nBài 1
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}\)
b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(1-x\right)^2}\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)\left(1+3x\right)-1}{x}\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}\)
Bài 2
a. \(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}\)
b. \(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}\left(n\in Z^+,a\ne0\right)\)
Bài 1:
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\frac{5x^4}{3x^2}=\frac{5}{3}\)
b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)x}{x}+\lim\limits_{x\rightarrow0}\frac{\left(1+3x\right)2x}{x}+\lim\limits_{x\rightarrow0}\frac{3x+1-1}{x}=1+2+3=6\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-5}{5x^4+2x}\)
\(=\lim\limits_{x\rightarrow0}\frac{20\left(1+x\right)^3}{20x^3+2}=\frac{20}{2}=10\)
Bài 2:
\(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)
\(\lim\limits_{x\rightarrow1}\frac{x-x^2}{\left(2x-1\right)\left(x^5-3\right)}\)
\(\lim\limits_{x\rightarrow0}x\left(1-\frac{1}{x}\right)\)
\(\lim\limits_{x\rightarrow1}\frac{x-x^2}{\left(2x-1\right)\left(x^5-3\right)}=\frac{1-1^2}{\left(2-1\right)\left(1-3\right)}=\frac{0}{-2}=0\)
\(\lim\limits_{x\rightarrow0}x\left(1-\frac{1}{x}\right)=\lim\limits_{x\rightarrow0}\left(x-1\right)=0-1=-1\)
\(\lim\limits_{x\rightarrow0}\left(\frac{1}{x}+\frac{1}{x^2}\right)\)
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{\left(-x\right)^2+2}}{x-1}\)
\(\lim\limits_{x\rightarrow-\infty}\frac{|x|+\sqrt{x^2+x}}{x+10}\)
\(\lim\limits_{x\rightarrow0}\left(\frac{x+1}{x^2}\right)=\frac{1}{0}=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+2}}{x-1}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{2}{x^2}}}{1-\frac{1}{x}}=\frac{1}{1}=1\)
\(\lim\limits_{x\rightarrow-\infty}\frac{\left|x\right|+\left|x\right|\sqrt{1+\frac{1}{x}}}{x\left(1+\frac{10}{x}\right)}=\lim\limits_{x\rightarrow-\infty}\frac{-1-\sqrt{1+\frac{1}{x}}}{1+\frac{10}{x}}=\frac{-2}{1}=-2\)