Bài 1
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}\)
b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(1-x\right)^2}\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)\left(1+2x\right)\left(1+3x\right)-1}{x}\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}\)
Bài 2
a. \(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}\)
b. \(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}\left(n\in Z^+,a\ne0\right)\)
Bài 1:
a. \(\lim\limits_{x\rightarrow-1}\frac{x^5+1}{x^3+1}=\lim\limits_{x\rightarrow-1}\frac{5x^4}{3x^2}=\frac{5}{3}\)
b. \(\lim\limits_{x\rightarrow1}\frac{4x^6-5x^5+x}{\left(x-1\right)^2}=\lim\limits_{x\rightarrow1}\frac{24x^5-25x^4+1}{2\left(x-1\right)}=\lim\limits_{x\rightarrow1}\frac{120x^4-100x^3}{2}=\frac{120-100}{2}=10\)
c. \(\lim\limits_{x\rightarrow0}\frac{\left(1+2x\right)\left(1+3x\right)x}{x}+\lim\limits_{x\rightarrow0}\frac{\left(1+3x\right)2x}{x}+\lim\limits_{x\rightarrow0}\frac{3x+1-1}{x}=1+2+3=6\)
d. \(\lim\limits_{x\rightarrow0}\frac{\left(1+x\right)^5-\left(1+5x\right)}{x^5+x^2}=\lim\limits_{x\rightarrow0}\frac{5\left(1+x\right)^4-5}{5x^4+2x}\)
\(=\lim\limits_{x\rightarrow0}\frac{20\left(1+x\right)^3}{20x^3+2}=\frac{20}{2}=10\)
Bài 2:
\(\lim\limits_{x\rightarrow1}\frac{x^m-1}{x^n-1}=\lim\limits_{x\rightarrow1}\frac{mx^{m-1}}{nx^{n-1}}=\frac{m}{n}\)
\(\lim\limits_{x\rightarrow a}\frac{x-a}{x^n-a^n}=\lim\limits_{x\rightarrow a}\frac{1}{nx^{n-1}}=\frac{1}{n.a^{n-1}}\)