cho x=1+\(\sqrt[3]{2}\)
tính B= \(^{x^4-2x^4+x^3-3x^2+1942}\)
cho x=1+\(\sqrt[3]{2}\) tinh B=x^4-2x^4+x^3-3x^2+1942
ta có \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\)
cậu tính ra rồi được một đa thức =0
ta tách B để có các hạng tử như trên rồi tinh tiếp
cho x=1+\(\sqrt[3]{2}\) tính giá trị B=\(x^5-2x^4+x^3-3x^2+1942\)
a) cho x=\(1+\sqrt[3]{2}\) tính B = \(x^4-2x^5+x^3-3x^2+1942\)
b) cho x = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\) tính P =\(\dfrac{x^4-4x^3+x^2+6x+12}{x^2-2x+12}\)
c) cho x = \(1+\sqrt[3]{2}\)\(+\sqrt[3]{4}\) tính C = \(x^5-4x^4+x^3-x^2-2x+2015\)
1.Cho \(x=1+\sqrt[3]{2}\). Tính giá trị của biểu thức B=\(x^5-2x^4+x^{3^{ }}-3x^{2^{ }}+1942\)
2. Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức P=\(x^5-4x^{4^{ }}+x^3-x^2-2x+2015\)
1/ \(x-1=\sqrt[3]{2}\Rightarrow\left(x-1\right)^3=2\Rightarrow x^3-3x^2+3x-3=0\)
\(B=x^2\left(x^3-3x^2+3x-3\right)+x\left(x^3-3x^3+3x-3\right)+x^3-3x^2+3x-3+1945\)
\(B=1945\)
b/ Tương tự:
\(x-1=\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(P=x^2\left(x^3-3x^2-3x-1\right)-x\left(x^3-3x^2-3x-1\right)+x^3-3x^2-3x-1+2016\)
\(P=2016\)
1/
A = \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là một số nguyên
2/
a) Cho x = \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\). Tính giá trị biểu thức:
P = \(\dfrac{x^4-4x^3+x^2+6x+12}{x^2-2x+12}\)
b) Cho x = \(1+\sqrt[3]{2}\) . Tính giá trị của biểu thức B = \(x^4-2x^4+x^3-3x^2+1942\)
3/
Rút gọn:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
B = \(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
Làm ơn, giúp mik với. Mik đang cần gấp!
Bài 3:
a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)
Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}\)
b) \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2-2x+4}-x}{3x-1}\)
Lời giải:
a)
\(\lim\limits_{x\to +\infty}\frac{\sqrt[3]{x^3+2x^2-4x+1}}{\sqrt{2x^2+x-8}}=\lim\limits_{x\to +\infty}\frac{\sqrt[3]{1+\frac{2}{x}-\frac{4}{x^2}+\frac{1}{x^3}}}{\sqrt{2+\frac{1}{x}-\frac{8}{x^2}}}\)
\(=\frac{1}{\sqrt{2}}\)
b)
\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2-2x+4}-x}{3x-1}=\lim\limits_{x\to -\infty}\frac{\sqrt{1-\frac{2}{x}+\frac{4}{x^2}}+1}{-3+\frac{1}{x}}=\frac{-1}{3}\)
Tính DKXD của các căn bậc thức sau:
a)\(\sqrt{2x-4}\)
b)\(\sqrt{\dfrac{3}{-2x+1}}\)
c)\(\sqrt{\dfrac{-3x+5}{-4}}\)
d)\(\sqrt{-5\left(-2x+6\right)}\)
e)\(\sqrt{\left(x^2+2\right)\left(x-3\right)}\)
f)\(\sqrt{\dfrac{x^2+5}{-x+2}}\)
a)đk:`2x-4>=0`
`<=>2x>=4`
`<=>x>=2.`
b)đk:`3/(-2x+1)>=0`
Mà `3>0`
`=>-2x+1>=0`
`<=>1>=2x`
`<=>x<=1/2`
c)`đk:(-3x+5)/(-4)>=0`
`<=>(3x-5)/4>=0`
`<=>3x-5>=0`
`<=>3x>=5`
`<=>x>=5/3`
d)`đk:-5(-2x+6)>=0`
`<=>-2x+6<=0`
`<=>2x-6>=0`
`<=>2x>=6`
`<=>x>=3`
e)`đk:(x^2+2)(x-3)>=0`
Mà `x^2+2>=2>0`
`<=>x-3>=0`
`<=>x>=3`
f)`đk:(x^2+5)/(-x+2)>=0`
Mà `x^2+5>=5>0`
`<=>-x+2>0`
`<=>-x>=-2`
`<=>x<=2`
a, ĐKXĐ : \(2x-4\ge0\)
\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)
Vậy ..
b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow-2x+1>0\)
\(\Leftrightarrow x< \dfrac{1}{2}\)
Vậy ..
c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)
\(\Leftrightarrow-3x+5\le0\)
\(\Leftrightarrow x\ge\dfrac{5}{3}\)
Vậy ...
d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)
\(\Leftrightarrow-2x+6\le0\)
\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)
Vậy ...
e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow x-3\ge0\)
\(\Leftrightarrow x\ge3\)
Vậy ...
f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow-x+2>0\)
\(\Leftrightarrow x< 2\)
Vậy ...
B1: tính : A = \(\sqrt{7+4\sqrt{3}}\) + \(\sqrt{7-4\sqrt{3}}\)
B2: cho P= 3x-\(\sqrt{x^2-10x+25}\)
a, rút gọn P
b, tính P khi x=2
B3: rút gọn : M = \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)với x khác 1
giúp em zới ạ em cảm mơn nhìu nhìu
\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)
\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)
\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)
\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)
B1.
Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)
Bài 1 :
\(A=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\\ =\sqrt{3}+2+2-\sqrt{3}=4\)
Bài 2 :
a) \(P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\)
b) khi x = 2 thì \(P=3.2-\left|2-5\right|=3\)
Bài 3 :
\(M=\dfrac{\sqrt{\left(\sqrt{x}-1\right)^2}}{x-1}=\dfrac{\left|\sqrt{x}-1\right|}{x-1}\)