Cho số thực x,y thỏa mãn \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\). Tính giá trị của
\(P=x^7+y^7+2x^5+2y^5-3x^3-3y^3+4x+4y+100\)
Dạng 1: Tính giá trị biểu thức [Rút gọn biểu thức rồi thay số (nếu đc)]
1) Tính giá trị biểu thức B = \(\sqrt{x-1+2\sqrt[3]{x\sqrt{x}+3x+3\sqrt{x}+1}}\), vs x = 5
2) Tính giá trị biểu thức C = \(\sqrt{2x-1+2\sqrt{x^2-x}+\sqrt{2x-1-2\sqrt{x^2-x}}}\), vs x = 4
3) Tính giá trị biểu thức D = \(\frac{\sqrt[3]{x\sqrt{x}\left(3x+1\right)+x^2\left(3+x\right)}}{\sqrt{x}+1}-\sqrt{x}\), vs x = 10
4) Tính giá trị biểu thức E = \(\sqrt{\sqrt[4]{x}+1-2\sqrt[8]{x}+1}\), vs x = 256
5) Cho x = \(\frac{\left(\sqrt{5}+2\right)\sqrt{3\sqrt{5}-6}}{\sqrt{4+\sqrt{9-4\sqrt{5}}}}\), tính giá trị biểu thức A = \(\left(x^4-5x^2+5\right)^{2014}\)
tính giá trị của biểu thức:
\(P=\left(2x^5+2x^4-x^3-1\right)^{2016}+\left(\sqrt{2x+2x-3x+3x+3}\right)^3+\dfrac{\left(2x^3+2x^2-x-3\right)^{2017}}{2x^4+2x^3-x^2-3^{2017}}\)
khi \(x=\sqrt{\dfrac{2-\sqrt{3}}{2}}\)
Giải pt : a) \(\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}\)
b) \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3x\)
c) \(2x^2-11x+2x=3\sqrt[3]{4x-4}\)
Cho \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2.\left(\sqrt{3}+1\right)}}\). Tính: \(A=\dfrac{4.\left(x+1\right).x^{2013}-2.x^{2012}+2x+1}{2x^2+3x}\)
Giải phương trình:
1, \(3x^2+6x-3=\sqrt{\dfrac{x+7}{3}}\) (2 cách khác nhau )
2, \(\left(\sqrt{3x+1}-\sqrt{x-2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
3, \(\sqrt{-3x-1}+\sqrt{9x^2+9x+3}=-9x^2-6x\)
4, \(\sqrt{x^2+x-6}+3\sqrt{x-1}=\sqrt{5x^2-1}\)
5, \(\left(\sqrt{x+4}+2\right)\left(x+2\sqrt{x-5}+1\right)=6x\)
6, \(\sqrt{5-x^4}-\sqrt[3]{3x^2-2}=1\)
7, \(3x^2+11+\sqrt{x-2}+\sqrt{2x+3}=14x\)
8, \(\sqrt{x-\sqrt{x-\sqrt{x-\sqrt{x-7}}}}=7\)
9, \(\sqrt{2x^2-1}+3x\sqrt{x^2-1}=3x^3+2x^2-9x-7\) ( với \(x>0\) )
a)\(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
b)\(x^2+x+12\sqrt{x+1}=36\)
c)\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
d)\(\sqrt{x^2+12}-3x=\sqrt{x^2+5}-5\)
e)\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
f)\(4x^3-25x^2+43x+x\sqrt{3x-2}=22+\sqrt{3x-2}\)
g)\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
h)\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
i)\(\sqrt{1-3x}-\sqrt[3]{3x-1}=\left|6x-2\right|\)
k)\(\sqrt{2x^3+3x^2-1}=2x^2+2x-x^3-1\)
l)\(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giải PT a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\)
b. \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\)
c. \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
d. \(\sqrt{9x-2x^2}-9x+2x^2+6=0\)
e. \(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
f. \(\sqrt{x^2+x-5}+\sqrt{x-x^2+3}=x^2-3x+4\)