Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
2012 SANG
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 15:23

1: Khi x=64 thì \(A=\dfrac{8+2}{8}=\dfrac{10}{8}=\dfrac{5}{4}\)

2: \(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

3: A/B>3/2

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{3}{2}>0\)

=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)

=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{\sqrt{x}\cdot2}>0\)

=>\(-\sqrt{x}+2>0\)

=>-căn x>-2

=>căn x<2

=>0<x<4

HT.Phong (9A5)
31 tháng 8 2023 lúc 15:25

1) Thay x=64 vào A ta có:

\(A=\dfrac{2+\sqrt{64}}{\sqrt{64}}=\dfrac{2+8}{8}=\dfrac{5}{4}\)

2) \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)

\(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

3) Ta có:

\(\dfrac{A}{B}>\dfrac{3}{2}\) khi

\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}>\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}}>\dfrac{3}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{x}}{2\sqrt{x}}>0\)

Mà: \(2\sqrt{x}\ge0\forall x\)

\(\Leftrightarrow2-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 2\)

\(\Leftrightarrow x< 4\)

Kết hợp với đk:

\(0< x< 4\)

Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 3 2021 lúc 13:34

1) Sửa đề: x=0,09

Thay x=0,09 vào A, ta được:

\(A=\dfrac{\sqrt{0.09}}{\sqrt{0.09}-1}=\dfrac{0.3}{0.3-1}=\dfrac{0.3}{-0.7}=\dfrac{-3}{7}\)

Ngoc Anh Thai
Xem chi tiết
HT2k02
15 tháng 4 2021 lúc 6:20

Câu 1:

a) ĐKXĐ: \(x>0;x\ne9\)

Với x=36 (thỏa mãn ĐKXĐ) thì A có giá trị :

\(A=\dfrac{\sqrt{36}+2}{1+\sqrt{36}}=\dfrac{6+2}{1+6}=\dfrac{8}{7}\)

 

b) Ta có: 

\(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

 

c) Ta có:

\(P=A\cdot B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Vì x là số nguyên lớn hơn 0 nên 

\(x\ge1\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2>0\Rightarrow P\le1+\dfrac{3}{2}=\dfrac{5}{2}\)

Dấu bằng xảy ra khi x=1;

 

 

HT2k02
15 tháng 4 2021 lúc 9:53

Gọi số sản phẩm dự định của xí nghiệp A và B lần lượt là x,y \(\left(x,y\in N;0< x,y< 720\right)\)

Vì tổng sản phẩm dự định là 720 nên ta có phương trình: \(x+y=720\left(1\right)\)

Vì thực tế , xí nghiệp A hoàn thành vượt mức 12% nên số sản phẩm xí nghiệp A thực tế là : \(112\%x=\dfrac{28}{25}x\)

Xí nghiệp B hoàn thành vượt mức 10% nên số sản phẩm xí nghiệp B thực tế là : \(110\%y=\dfrac{11}{10}y\)

Vì tổng số sản phẩm thực tế là 800 nên ta có phương trình: \(\dfrac{28}{25}x+\dfrac{11}{10}y=800\Leftrightarrow56x+55y=40000\left(2\right)\)

Từ (1)(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=720\\56x+55y=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=720\\55\cdot720+x=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=320\end{matrix}\right.\left(t.m\right)\)

Vậy số sản phẩm 2 xí nghiệp làm theo kế hoạch lần lượt là 400 và 320 sản phẩm

HT2k02
15 tháng 4 2021 lúc 10:19

1) Ta có phương trình:

\(3x^4-2x^2-40=0\Leftrightarrow\left(3x^4-12x^2\right)+\left(10x^2-40\right)=0\Leftrightarrow\left(x^2-4\right)\left(3x^2+10\right)=0\)

Mà \(3x^2+10\ge10>0\)

\(\Leftrightarrow x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

Vậy \(S=\left\{\pm2\right\}\) là tập nghiệm của phương trình

 

2)

Xét phương trình bậc 2 ẩn x :

\(x^2+\left(m-1\right)x-m^2-2=0\left(1\right)\)

Có hệ số: \(a=1;b=m-1;c=-m^2-2\)

\(\Rightarrow ac=-m^2-2\le-2< 0\)

Suy ra (1) có 2 nghiệm trái dấu \(x_1,x_2\) với mọi m thỏa mãn:

\(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-m^2-2\end{matrix}\right.\left(2\right)\)

Đặt \(\left(\dfrac{x_1}{x_2}\right)^3=-a\left(a>0\right)\Rightarrow\left(\dfrac{x_2}{x_1}\right)^3=-\dfrac{1}{a}\) (do x1,x2 là 2 số trái dấu)

\(\Rightarrow T=-\left(a+\dfrac{1}{a}\right)\)

Áp dụng bất đẳng thức Cô-si cho 2 số dương \(a\) và \(\dfrac{1}{a}\) ta có:

\(a+\dfrac{1}{a}\ge2\sqrt{a\cdot\dfrac{1}{a}}=2\)

\(\Rightarrow T\le-2\)

Dấu "=" xảy ra \(\Leftrightarrow a=\dfrac{1}{a}\Leftrightarrow a=1\left(a>0\right)\Leftrightarrow x_1=-x_2\)

(2) trở thành: \(\left\{{}\begin{matrix}m-1=0\\x_1^2=m^2+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\x_1^2=3\left(t.m\right)\end{matrix}\right.\)

Vậy T đạt giá trị nhỏ nhất là -2 tại m=1

 

Ngoc Anh Thai
Xem chi tiết
HT2k02
11 tháng 4 2021 lúc 0:11

Câu 1:

a) Khi x =16 (t.m ĐKXĐ) thì B có giá trị là:

\(B=\dfrac{16-6\cdot4}{4-1}=\dfrac{-8}{3}\)

b) Ta có:

\(A=\dfrac{25\sqrt{x}+6}{x-36}-\dfrac{\sqrt{x}-1}{6-\sqrt{x}}+\dfrac{2\sqrt{x}}{\sqrt{x}+6}=\dfrac{25\sqrt{x}+6}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{25\sqrt{x}+6+x+5\sqrt{x}-6+2x-12\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3x+18\sqrt{x}}{\left(\sqrt{x}-6\right)\left(\sqrt{x}+6\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-6}\)

c) Ta có:

\(T=\sqrt{A\cdot B}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x\left(\sqrt{x}-6\right)}{\left(\sqrt{x}-6\right)\left(\sqrt{x}-1\right)}}=\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\overset{Cosi}{\ge}\sqrt{3\cdot2+6}=2\sqrt{3}\)

Dấu = xảy ra \(\Leftrightarrow\left(\sqrt{x}-1\right)^2=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(t.m\right)\)

 

trương khoa
11 tháng 4 2021 lúc 15:57

Gọi vận tốc dự định của hai bố con bạn Dũng là x(km/h)(x>0).Đổi: 10 phút =\(\dfrac{1}{6}\)(h)

thời gian dự định đi về quê là \(\dfrac{60}{x}\)(h)

vận tốc đi trên \(\dfrac{1}{3}\)quãng đường là đường xấu hai bố con bạn Dũng là \(x-10\)(km/h)

Thời gian thực tế đi về quê là \(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\)(h)

Vì hai bố con bạn Dũng đã về tới quê chậm mất 10 phút so với dự kiến

Nên ta có pt sau:

\(\left(\dfrac{\dfrac{1}{3}\cdot60}{x-10}+\dfrac{\dfrac{2}{3}\cdot60}{x}\right)-\dfrac{1}{6}=\dfrac{60}{x}\)

\(\dfrac{20}{x-10}+\dfrac{40}{x}-\dfrac{1}{6}=\dfrac{60}{x}\)

\(20x+40\left(x-10\right)-\dfrac{1}{6}x\left(x-10\right)=60\left(x-10\right)\)

\(-\dfrac{1}{6}x^2+\dfrac{5}{3}x+200=0\)

\(\left[{}\begin{matrix}x=40\left(n\right)\\x=-30\left(l\right)\end{matrix}\right.\)

Vậy ......

 

 

❤X༙L༙R༙8❤
11 tháng 4 2021 lúc 20:14

Gọi x(km/h)x(km/h) là vận tốc dự định của hai bố con (x>10)(x>10)

Thời gian dự định là: 60x60x (giờ)

1313 quãng đường là: 13.60=20(km)13.60=20(km)

Vận tốc trên đoạn đường 20km20km là: x−10(km/h)x−10(km/h)

Thời gian đi trên đoạn đường 20km20km là: 20x−1020x-10 (giờ)

Đoạn đường đi với vận tốc dự định là: 60−20=40(km)60-20=40(km)

Thời gian đi trên đoạn đường 40km40km là: 40x40x (giờ)

Vì hai bố con về tới quê chậm 1010 phút =16=16 giờ nên ta có phương trình sau:

    60x+16=20x−10+40x    60x+16=20x-10+40x

⇔20x+16−20x−10=0⇔20x+16-20x-10=0

⇔20.6(x−10)+1.x(x−10)−20.6x=0⇔20.6(x-10)+1.x(x-10)-20.6x=0

⇔120x−1200+x2−10x−120x=0⇔120x-1200+x2-10x-120x=0

⇔x2−10x−1200=0⇔x2-10x-1200=0

⇔⇔[x=−30(loại)x=40(thỏa mãn)[x=−30(loại)x=40(thỏa mãn)

Vậy vận tốc dự định của hai bố con là 40km/h

 Huyền Trang
Xem chi tiết
santa
29 tháng 1 2021 lúc 21:25

a) \(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

b) \(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)  (*)

Thay (*) vào B , ta được : \(B=\dfrac{2-\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{-\sqrt{3}+1}{3\sqrt{3}+3}\)

 

Trương Huy Hoàng
29 tháng 1 2021 lúc 22:46

Bạn santa làm sai r nha!

a, ĐKXĐ: x \(\ge\) 0; x \(\ne\) 4; x \(\ne\) 0

B = \(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)

B = \(\left(\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\)

B = \(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)

B = \(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{3}\)

B = \(\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{3\sqrt{x}\left(\sqrt{x}+1\right)}\)

B = \(\dfrac{2-\sqrt{x}}{3\sqrt{x}}\) (Đoạn này bạn kia viết sai đề mà vẫn đúng kết quả được?)

Vậy ...

b, Ta có: x = 4 + 2\(\sqrt{3}\) = (\(\sqrt{3}\) + 1)(TMĐK)

\(\Rightarrow\) \(\sqrt{x}\) = \(\sqrt{3}+1\) (1)

Thay (1) vào B ta được:

B = \(\dfrac{2-\sqrt{3}-1}{3\left(\sqrt{3}-1\right)}\) = \(\dfrac{1-\sqrt{3}}{-3\left(1-\sqrt{3}\right)}\) = \(\dfrac{-1}{3}\)

Vậy ...

Chúc bn học tốt!

santa
29 tháng 1 2021 lúc 22:47

mình làm lại nhé :

đkxđ : \(\left\{{}\begin{matrix}x>0\\x\ne1\\x\ne4\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow B=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{3}\)

\(\Leftrightarrow B=\dfrac{2-\sqrt{x}}{3\sqrt{x}}\)

câu b làm như kia là oke rồi nhé <3

 

Hoang Minh
Xem chi tiết
HT.Phong (9A5)
5 tháng 8 2023 lúc 11:06

a) Thay x=25 vào B ta có:

\(B=\dfrac{\sqrt{25}+2}{\sqrt{25}-2}=\dfrac{7}{3}\)

b) \(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{2\sqrt{x}-1}{x-5\sqrt{x}+6}\)

\(A=\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{x-9-x+4+2\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\dfrac{2}{\sqrt{x}-2}\)

c) Ta có: \(A>B\) Khi:

\(\dfrac{2}{\sqrt{x}-2}>\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{x}-2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\dfrac{-\sqrt{x}}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}-\sqrt{x}< 0\\\sqrt{x}-2< 0\end{matrix}\right.\\\left\{{}\begin{matrix}-\sqrt{x}>0\\\sqrt{x}-2>0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x>4\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow0< x< 4\) 

be.Xuan
Xem chi tiết
Vô danh
21 tháng 3 2022 lúc 15:14

\(B=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Thay \(x=6-2\sqrt{5}\) vào B ta có:

\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ =\dfrac{\sqrt{6-2\sqrt{5}}-1}{\sqrt{6-2\sqrt{5}}+1}\\ =\dfrac{\sqrt{5-2\sqrt{5}+1}-1}{\sqrt{5-2\sqrt{5}+1}+1}\\ =\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\\ =\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}\\ =\dfrac{\sqrt{5}-2}{\sqrt{5}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{5}\\ =\dfrac{5-2\sqrt{5}}{5}\)

Ngoc Anh Thai
Xem chi tiết
HT2k02
8 tháng 4 2021 lúc 10:50

Tiếp bạn Thịnh 

1c)

Ta có:

\(S=A\cdot B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=1+\dfrac{1}{\sqrt{x}+2}\)

Mà \(\sqrt{x}\ge0\Rightarrow S\le1+\dfrac{1}{1+2}=1+\dfrac{1}{3}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi x=0

HT2k02
8 tháng 4 2021 lúc 10:55

Câu 2:

a) Để hưởng ứng phong trào phòng chống dịch COVID-19, một chi đoàn thanh niên dự định làm 600 chiếc mũ ngăn giọt bắn trong một thời gian quy định. Nhờ tăng năng suất lao động mỗi giờ chi đoàn đó làm được nhiều hơn so với kế hoạch là 30 chiếc nên công việc được hoàn thành sớm hơn quy định 1 giờ. Hỏi theo kế hoạch 1 giờ chi đoàn đó phải làm bao nhiêu chiếc mũ ngăn giọt bắn?

Giải : Gọi số chiếc mũ làm 1 h theo dự định là x (x là số tự nhiên khác 0 )

Vì có tất cả 600 chiếc nên làm trong 600/x giờ

Vì mỗi giờ chi đoàn đó làm được nhiều hơn so với kế hoạch là 30 chiếc (x+30 chiếc) nên công việc được hoàn thành trong 600/30+x.

Vì làm sớm hơn 1  h nên ta có phương trình:

600/x = 600/(30+x)+1

<=> 600(x+30)= 600x + (x+30)x

<=> x^2+30x - 18000=0

<=> (x-120)(x+150)=0

<=> x=120 (thỏa mãn x là số tự nhiên khác 0)

Đỗ Thanh Hải
8 tháng 4 2021 lúc 11:57

undefined

undefined

undefined

undefined

huy tạ
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2021 lúc 21:30

a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

nguyễn thị hương giang
23 tháng 10 2021 lúc 21:35

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

                        Đk: \(x>0\) và \(x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

        \(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào A ta được:

  \(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)

      \(=\sqrt{2}+1-1=\sqrt{2}\)

(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))

Hoang Minh
Xem chi tiết
YuanShu
25 tháng 7 2023 lúc 17:02

\(a,P=\dfrac{3\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\left(dk:x\ge0,x\ne1\right)\)

\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\\ =\dfrac{2\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\\ =\dfrac{2\sqrt{x}+4-\sqrt{x}-1}{\sqrt{x}+2}\\ =\dfrac{\sqrt{x}+3}{\sqrt{x}+2}\)

\(b,x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+3}{\sqrt{\left(\sqrt{5}-1\right)^2}+2}=\dfrac{\left|\sqrt{5}-1\right|+3}{\left|\sqrt{5}-1\right|+2}=\dfrac{\sqrt{5}-1+3}{\sqrt{5}-1+2}=\dfrac{\sqrt{5}+2}{\sqrt{5}+1}\)