Lời giải:
$A=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}$
$=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}$
$=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|$
$=\sqrt{x-1}+1+|\sqrt{x-1}-1|$
Với $1< x< 2$ thì $\sqrt{x-1}-1< 0$. Do đó $|\sqrt{x-1}-1|=1-\sqrt{x-1}$
$\Rightarrow A=\sqrt{x-1}+1+1-\sqrt{x-1}=2$