Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thị Kim Dung
Xem chi tiết
Hà Nam Phan Đình
12 tháng 11 2017 lúc 13:59

BĐT cần chứng minh tương đương :

\(\sqrt{\dfrac{a^2+b^2}{2}}-\sqrt{ab}\ge\dfrac{a+b}{2}-\dfrac{2ab}{a+b}\)

\(\Leftrightarrow\dfrac{\dfrac{a^2+b^2}{2}-ab}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a+b\right)^2-4ab}{2\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\dfrac{\left(a-b\right)^2}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{\left(a-b\right)^2}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\right)\ge0\)

ta phải chứng minh;

\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}-\dfrac{1}{2\left(a+b\right)}\ge0\)

\(\Leftrightarrow\)\(\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}}\ge\dfrac{1}{2\left(a+b\right)}\)

\(\Leftrightarrow a+b\ge\sqrt{\dfrac{a^2+b^2}{2}}+\sqrt{ab}\)\(\Leftrightarrow2a+2b-\sqrt{2\left(a^2+b^2\right)}-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(a+b-\sqrt{2\left(a^2+b^2\right)}\right)+\left(a+b-2\sqrt{ab}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2-2\left(a^2+b^2\right)}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a+b\right)^2-4ab}{a+b+2\sqrt{ab}}\ge0\)

\(\Leftrightarrow\dfrac{-\left(a-b\right)^2}{a+b+\sqrt{2\left(a^2+b^2\right)}}+\dfrac{\left(a-b\right)^2}{a+b+2\sqrt{ab}}\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\right)\ge0\)

ta phải chứng minh

\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}-\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\ge0\)

\(\Leftrightarrow\dfrac{1}{a+b+2\sqrt{ab}}\ge\dfrac{1}{a+b+\sqrt{2\left(a^2+b^2\right)}}\)

\(\Leftrightarrow a+b+2\sqrt{ab}\le a+b+\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow2\sqrt{ab}\le\sqrt{2\left(a^2+b^2\right)}\Leftrightarrow\left(a-b\right)^2\ge0\)

Nguyễn Thị Bích Thuỳ
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 21:58

\(\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)

\(\Leftrightarrow\dfrac{2}{a+2}-1+\dfrac{2}{b+2}-1+\dfrac{2}{c+2}-1\ge2-3\)

\(\Rightarrow1\ge\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}=\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\)

\(\Rightarrow1\ge\dfrac{\left(a+b+c\right)^2}{a^2+2a+b^2+2b+c^2+2c}\)

\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Rightarrow\) đpcm

Nguyễn Thị Bích Thuỳ
18 tháng 9 2021 lúc 21:46

Phía trên thoả mãn \(\ge1\) chứ không phải 3/2 đâu ạ 

Meoww
Xem chi tiết
nguyễn thị lan hương
11 tháng 6 2018 lúc 8:32

\(a^2+b^2+1\ge ab+a+b\)

<=> \(2a^2+2b^2+2\ge2ab+2a+2b\)

<=>\(\left(a^2+2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

<=>\(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

do (a-b)2>=0, (a-1)2>=0,(b-1)2>=0=>BĐT được c/m

dấu ''=''m xảy ra khi và chỉ khi a=b=1

alibaba nguyễn
11 tháng 6 2018 lúc 8:24

\(a^2+b^2+1=\frac{1}{2}\left[\left(a^2+b^2\right)+\left(a^2+1\right)+\left(b^2+1\right)\right]\ge ab+a+b\)

nguyễn thị lan hương
11 tháng 6 2018 lúc 8:34

mình nhầm một chút ở chỗ \(\left(a^2+2ab+b^2\right)thành\left(a^2-2ab+b^2\right)nhé\)

Unosaki
Xem chi tiết
Nguyễn Thu Trang
10 tháng 11 2018 lúc 21:08

Cosi ngược dấu

zZz Cool Kid_new zZz
1 tháng 5 2020 lúc 23:37

Giả sử \(a\ge b\ge c\)

Ta có:\(\frac{a+b}{ab+c^2}+\frac{b+c}{bc+a^2}+\frac{c+a}{ca+b^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{ac+bc-ab-c^2}{c\left(ab+c^2\right)}+\frac{ab+ac-bc-a^2}{\left(bc+a^2\right)a}+\frac{cb+ab-ca-b^2}{b\left(ca+b^2\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}+\frac{\left(c-b\right)\left(b-a\right)}{b\left(ca+b^2\right)}\le0\)

Ta có:\(\left(c-b\right)\left(b-a\right)\ge0;\left(b-a\right)\left(a-c\right)\le0;\left(a-c\right)\left(c-b\right)\le0\)

\(\Rightarrow\frac{\left(c-b\right)\left(c-a\right)}{b\left(ca+b^2\right)}\le\frac{\left(c-b\right)\left(c-a\right)}{c\left(ab+c^2\right)}\)

\(\Rightarrow LHS\le\frac{\left(a-c\right)\left(c-b\right)}{c\left(ab+c^2\right)}+\frac{\left(c-b\right)\left(b-a\right)}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)a}\)

\(=\frac{-\left(c-b\right)^2}{c\left(ab+c^2\right)}+\frac{\left(b-a\right)\left(a-c\right)}{\left(bc+a^2\right)c}\le0\)

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Hn . never die !
2 tháng 5 2020 lúc 5:42

Trả lời :

Bn Thu Trang đừng bình luận linh tinh nhé.

- Hok tốt !

^_^

Khách vãng lai đã xóa
hilary
Xem chi tiết
Y
1 tháng 5 2019 lúc 11:02

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

luu cong hoang long
Xem chi tiết
luu cong hoang long
13 tháng 7 2020 lúc 16:10

Trời ko ai giải dùm hả 

Khách vãng lai đã xóa
luu cong hoang long
13 tháng 7 2020 lúc 16:17

Thôi chắc mình tự trả lời cho mn tham khảo quá.

Áp dụng BĐT Cauchy dạng :\(\frac{x+y}{2}\ge\sqrt{x+y}\Leftrightarrow x+y\ge2\sqrt{xy}\) 

                        Dấu "=" xảy ra khi : x = y

Ta có : 

          \(ab+\frac{a}{b}\ge2.\sqrt{ab.\frac{a}{b}}=2\sqrt{a^2}=2a\)

Tương tự : \(\frac{a}{b}+\frac{b}{a}\ge2\)

                    \(ab+\frac{b}{a}\ge2b\)

Cộng vế với vế ta được : 

       \(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)

\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Văn Tuấn Anh
Xem chi tiết
tth_new
17 tháng 11 2019 lúc 10:51

BĐT \(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge a+b+c+ab+bc+ca\)

\(\Leftrightarrow\frac{3}{4}\left(y-z\right)^2+\frac{1}{4}\left(y+z-x\right)^2+a^2+b^2+c^2-\left(a+b+c\right)\ge0\)

Có: \(VT\ge\frac{3}{4}\left(y-z\right)^2+\frac{1}{4}\left(y+z-x\right)^2+\left[\frac{\left(a+b+c\right)^2}{3}-\left(a+b+c\right)\right]\ge0\)(chú ý: \(\left(a+b+c\right)^2=\left(a+b+c\right)\left(a+b+c\right)\ge3\sqrt[3]{abc}\left(a+b+c\right)=3\left(a+b+c\right)\))

Ta có đpcm.

Khách vãng lai đã xóa
Nguyễn Văn Tuấn Anh
17 tháng 11 2019 lúc 12:28

Có cách khác ^_^ mới nghĩ ra

BĐt <=> \(P\left(a,b,c\right)=a^2+b^2+c^2-\frac{1}{2}\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge0\)

Không mất tính tổng quát , giả sử : \(a=min\left\{a,b,c\right\}\Rightarrow t=\sqrt{bc}\ge1\)

=> Chứng minh: \(P\left(a,b,c\right)\ge P\left(a,t,t\right)\)

Thật vậy , \(P\left(a,b,c\right)-P\left(a,t,t\right)=\left(\sqrt{b}-\sqrt{c}\right)^2\left[\left(\sqrt{b}+\sqrt{c}\right)^2-\frac{1}{2}\left(1+\frac{1}{bc}\right)\right]\)

                                                                  \(\ge\left(\sqrt{b}-\sqrt{c}\right)^2\left[4-\frac{1}{2}\left(1+1\right)\right]\ge0\)

mặt khác: \(P\left(a,t,t\right)=P\left(\frac{t}{t^2},t,t\right)=\frac{\left(t-1\right)^2\left(3t^4+4t^3+5t^2+4t+2\right)}{2t^4}\ge0\)

=> BĐT được chứng minh . Đt xảy ra<=> a=b=c=1

Khách vãng lai đã xóa
tth_new
17 tháng 11 2019 lúc 13:12

Nguyễn Văn Tuấn Anh cách đó phức tạp lắm, nên mình không làm;))

Khách vãng lai đã xóa
nguyenchieubao
Xem chi tiết
Đinh Đức Hùng
4 tháng 10 2017 lúc 17:59

\(bdt\Leftrightarrow a^2+b^2+c^2-ab-ac-bc-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)

Đặt \(a-b=x;b-c=y;c-a=z\) nên

\(bdt\Leftrightarrow\frac{1}{2}\left(x^2+y^2+z^2\right)-\frac{x^2}{26}-\frac{y^2}{6}-\frac{z^2}{2009}\ge0\)

\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{26}\right)+\left(\frac{y^2}{2}-\frac{y^2}{6}\right)+\left(\frac{z^2}{2}-\frac{z^2}{2009}\right)\ge0\)

\(\Leftrightarrow\frac{6x^2}{13}+\frac{y^2}{3}+\frac{2007z^2}{4018}\ge0\)(luôn đúng \(\forall x;y;z\))

Vậy BTĐ đã được chứng minh

Trần Hoàng Uyên Nhi
Xem chi tiết
Huy Nguyễn Đức
13 tháng 3 2017 lúc 22:45

ta cần chứng minh a^2+b^2+1-ab-a-b>hoặc bằng 0

2(a^2+b^2+1-ab-a-b)>hoặc bằng 0

2a^2+2b^2+2-2ab-2a-2b>hoặc bằng 0

a^2-2ab+b^2+a^2-2a+1+b^2-2b+1>hoặc bằng 0

(a-b)^2+(a-1)^2+(b-1)^2>hoặc bằng 0 (luôn đúng)

suy ra pt trên đúng