Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Thị Thu Hiền
Xem chi tiết
lạc lạc
12 tháng 11 2021 lúc 6:54

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 7:05

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

nguyen ngoc son
Xem chi tiết
ILoveMath
1 tháng 2 2022 lúc 10:04

undefined

Nguyễn Thái Thịnh
1 tháng 2 2022 lúc 11:27

Phương trình có nghiệm \(\Leftrightarrow\Delta'\ge0\Leftrightarrow1-m\ge0\Leftrightarrow m\le1\)

Theo hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\) (1)

Ta có: \(\dfrac{1}{x^2}+\dfrac{1}{x^2}=1\Leftrightarrow\dfrac{x^2_1+x^2_2}{x^2_1x^2_2}=1\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=1\) (2)

Từ (1) và (2) \(\Rightarrow4-2m=m^2\Leftrightarrow m^2+2m-4=0\)

\(\Delta'=1+4=5\Rightarrow\sqrt{\Delta'}=\sqrt{5}\Rightarrow\left[{}\begin{matrix}m=-1+\sqrt{5}\left(\text{loại}\right)\\m=-1-\sqrt{5}\left(\text{nhận}\right)\end{matrix}\right.\)

Vậy \(m=-1-\sqrt{5}\)

Anh Mai
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2020 lúc 17:51

Để pt có 2 nghiệm khác 0 \(\Leftrightarrow m\ne0\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-3m^2\end{matrix}\right.\)

\(\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{8}{3}\)

\(\Leftrightarrow x_1^2-x_2^2=\frac{8}{3}x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=\frac{8}{3}x_1x_2\)

\(\Leftrightarrow x_1-x_2=\frac{4}{3}\left(-3m^2\right)=-4m^2\)

Kết hợp Viet ta được

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=-4m^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-2m^2+1\\x_2=2m^2+1\end{matrix}\right.\)

\(\Rightarrow\left(1-2m^2\right)\left(1+2m^2\right)=-3m^2\)

\(\Leftrightarrow1-4m^4=-3m^2\)

\(\Leftrightarrow4m^4-3m^2-1=0\Rightarrow\left[{}\begin{matrix}m^2=1\\m^2=-\frac{1}{4}\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=\pm1\)

Nguyễn Việt Lâm
16 tháng 4 2020 lúc 22:12

Từ hệ "kết hợp Viet" ấy lần lượt cộng vế với vế và trừ vế với vế là ra thôi mà

Anh Mai

Anh Mai
16 tháng 4 2020 lúc 22:11

bạn oie, làm thế nào để ra được \(\left\{{}\begin{matrix}x_1=-2m^2+1\\x_2=2m^2+1\end{matrix}\right.\) thế ạ

Truong thuy vy
Xem chi tiết
Big City Boy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
....
Xem chi tiết
Su Su
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 5 2021 lúc 22:25

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

𝓓𝓾𝔂 𝓐𝓷𝓱
28 tháng 5 2021 lúc 22:29

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

Quy Vu Thi
Xem chi tiết
Thúy Nga
1 tháng 4 2019 lúc 23:14

\(\Delta'=b'^2-ac=\left[-\left(m-2\right)\right]^2-1.\left(m^2+2m-3\right)=-6m+7\)

Để pt có 2 no thì \(\Delta'>0\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{matrix}\right.\)

Mặt khác: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\Leftrightarrow5\left(x_1+x_2\right)=x_1.x_2\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)\left(5-x_1.x_2\right)=0\)

Do đó: \(2\left(m-2\right)\left(5-m^2-2m+3\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-4\end{matrix}\right.\)

Vậy khi m=-4 thì thỏa mãn...