Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quy Vu Thi

Cho PT bậc hai: x^2-2(m-2)x+m^2+2m-3=0

a) Tìm các giá trị của m để PT có 2 nghiệm x1, x2 thỏa mãn hệ thức: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)

Thúy Nga
1 tháng 4 2019 lúc 23:14

\(\Delta'=b'^2-ac=\left[-\left(m-2\right)\right]^2-1.\left(m^2+2m-3\right)=-6m+7\)

Để pt có 2 no thì \(\Delta'>0\Leftrightarrow-6m+7>0\Leftrightarrow m< \frac{7}{6}\)

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{matrix}\right.\)

Mặt khác: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\Leftrightarrow5\left(x_1+x_2\right)=x_1.x_2\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)\left(5-x_1.x_2\right)=0\)

Do đó: \(2\left(m-2\right)\left(5-m^2-2m+3\right)=0\Leftrightarrow\left[{}\begin{matrix}m=2\left(loại\right)\\m=-4\end{matrix}\right.\)

Vậy khi m=-4 thì thỏa mãn...


Các câu hỏi tương tự
Limited Edition
Xem chi tiết
KYAN Gaming
Xem chi tiết
Uyên
Xem chi tiết
Uyên
Xem chi tiết
Chii Phương
Xem chi tiết
ngọc linh
Xem chi tiết
KYAN Gaming
Xem chi tiết
Thanh Thanh
Xem chi tiết
khát vọng
Xem chi tiết