Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Uyên

1. Cho pt \(3x^2+4x+1=0\)

có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

2. . Cho pt \(3x^2-5x-1=0\)

có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(D=\dfrac{x_1-x_2}{x_1}+\dfrac{x_2-1}{x_2}\)

3. . Cho pt \(3x^2-7x-1=0\)

có nghiệm x1,x2, không giải pt, hãy tính giá trị biểu thức \(B=\dfrac{2x^2_2}{x_1+x_2}+2x_1\)

Nguyễn Ngọc Huy Toàn
7 tháng 4 2022 lúc 18:32

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

YangSu
7 tháng 4 2022 lúc 18:34

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

YangSu
7 tháng 4 2022 lúc 18:41

\(3,3x^2-7x-1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{7}{3}\\P=x_1x_2=\dfrac{c}{a}=-\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(B=\dfrac{2x_2^2}{x_1+x_2}+2x_1\)

\(=\dfrac{2x_2^2+2x_1\left(x_1+x_2\right)}{x_1+x_2}\)

\(=\dfrac{2x_2^2+2x_1^2+2x_1x_2}{x_1+x_2}\)

\(=\dfrac{2\left(x_1^2+x_2^2\right)+2x_1x_2}{x_1+x_2}\)

\(=\dfrac{2\left(S^2-2P\right)+2P}{S}\)

\(=\dfrac{2\left(\dfrac{7}{3}^2-2\left(-\dfrac{1}{3}\right)\right)+2\left(-\dfrac{1}{3}\right)}{\dfrac{7}{3}}\)

\(=\dfrac{104}{21}\)

Vậy \(B=\dfrac{104}{21}\)

Nguyễn Ngọc Huy Toàn
7 tháng 4 2022 lúc 18:46

3.Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{3}\\x_1x_2=-\dfrac{1}{3}\end{matrix}\right.\)

\(B=\dfrac{2x_2^2}{x_1+x_2}+2x_1=\dfrac{2x_2^2+2x_1\left(x_1+x_2\right)}{x_1+x_2}\)

   \(=\dfrac{2x_2^2+2x_1^2+2x_1x_2}{x_1+x_2}=\dfrac{2\left(x_1^2+x_2^2+x_1x_2\right)}{x_1+x_2}\)

  \(=\dfrac{2\left[\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2\right]}{x_1+x_2}\)

 \(=\dfrac{2\left[\left(\dfrac{7}{3}\right)^2-\left(-\dfrac{1}{3}\right)\right]}{\dfrac{7}{3}}=\dfrac{\dfrac{104}{9}}{\dfrac{7}{3}}=\dfrac{104}{21}\)


Các câu hỏi tương tự
Uyên
Xem chi tiết
Bảo Trân
Xem chi tiết
Chanhh
Xem chi tiết
Uyên
Xem chi tiết
Limited Edition
Xem chi tiết
Uyên
Xem chi tiết
Chanhh
Xem chi tiết
illumina
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết