Điểm A thuộc đường tròn (O; 3 cm) thì OA có độ dài là:
Select one: a. 9 cm b. 1,5 cm c. 6 cm d. 3 cmCho đường tròn (O), A là một điểm bất kì thuộc đường tròn. Vẽ A’ đối xứng với A qua O (h.56). Chứng minh rằng điểm A’ cũng thuộc đường tròn (O).
Do A' đối xứng với A qua O nên O là trung điểm của AA' ⇒ OA = OA' = R
⇒ A' cũng thuộc đường tròn (O)
Cho đường tròn (O), A là một điểm bất kì thuộc đường tròn. Vẽ A’ đối xứng với A qua O (h.56). Chứng minh rằng điểm A’ cũng thuộc đường tròn (O).
Do A' đối xứng với A qua O nên O là trung điểm của AA' ⇒ OA = OA' = R
⇒ A' cũng thuộc đường tròn (O)
cho điểm A thuộc đường thẳng a. trên đường thẳng vuông góc với a tại A, lấy diểm O sao cho OA= 5cm. Vẽ đường tròn (O;3cm). M là điểm bất kỳ trên a, vẽ tiếp tuyến MB với đường tròn (O) (B là tiếp điểm). Vẽ dây BC của đường tròn (O) vuông góc với OM, cắt OM tại N.
a) đường thẳng a có vị trí như thế nào với đường tròn (O)? vì sao?
b) cm MC là tiếp tuyến của đường tròn (O).
c) cm bốn điểm A,B,O,M cùng thuộc một đường tròn.
Cho đường tròn (O; R) và điểm M bất kì, biết rằng OM = R . Chọn khẳng định đúng?
A. Điểm M nằm ngoài đường tròn (O; R)
B. Điểm M nằm trên đường tròn (O; R)
C.Điểm M nằm trong đường tròn (O; R)
D. Điểm M không thuộc đường tròn (O; R)
Cho đường tròn (O). Đường thẳng (d) không đi qua tâm (O) cắt đường tròn tại hai điểm A và B theo thứ tự, C là điểm thuộc (d) ở ngoài đường tròn (O). Vẽ đường kính PQ vuông góc với dây AB tại D ( P thuộc cung lớn AB), Tia CP cắt đường tròn (O) tại điểm thứ hai là I, AB cắt IQ tại K.
a) Chứng minh tứ giác PDKI nội tiếp đường tròn.
b) Chứng minh CI.CP = CK.CD
c) Chứng minh IC là phân giác của góc ngoài ở đỉnh I của tam giác AIB.
d) Cho ba điểm A, B, C cố định. Đường tròn (O) thay đổi nhưng vẫn đi qua A và B. Chứng minh rằng IQ luôn đi qua một điểm cố định.
a) Tứ giác PDKI nọi tiếp đườngtròn đường kính PK.
b) Ta có \(\Delta CIK\sim\Delta CDP(g.g)\) nên \(CI.CP=CK.CD\).
c) Giả sử Q nằm trên cung nhỏ AB.
Khi đó Q là điểm chính giữa của cung nhỏ AB nên IQ là phân giác của góc AIB. Lại có IC vuông góc với IQ nên IC là phân giác ngoài của tam giác IAB.
b) Theo phương tích ta có CP . CI = CA . CB.
Lại có CK . CD = CI . CP nên CK . CD = CA . CB.
Mà C, A, B cố định và D là trung điểm của AB \(\Rightarrow\) D cố định nên K cũng cố định.
Vậy QI đi qua K cố định.
Cho điểm E thuộc đường tròn (O) đường kính MN. Tiếp tuyến tại N cắt ME tại điểm D.
a) C/m tam giác MEN vuông và DE.DM = DN2
b) Từ O kẻ OI vuông góc với ME. C/m 4 điểm O, I, D, N cùng thuộc một đường tròn.
c) Vẽ đường tròn đường kính OD cắt đường tròn (O) tại điểm A. C/m DA và đường tròn (O) có một điểm chung.
Cho đường tròn tâm O bán kính AB . Vẽ tiếp tuyến Ax,By (A,B tiếp điểm) .Gọi M là điểm thuộc đường tròn O , kẻ tiếp tuyến tại M giao Ax,By lần lượt tại C và D . Chứng minh 4 điểm C,M,O,A cùng thuộc 1 đường tròn
Có \(\widehat{CAO}=\widehat{CMO}=90^o\) nên \(A,M\) cùng nhìn \(CO\) dưới góc vuông do đó \(C,M,O,A\) cùng thuộc một đường tròn.
Cho đường tròn (O;R), đường kính AB. Lấy điểm C thuộc đường tròn (O;R) sao cho AC > BC. Kẻ đường cao CH của tam giác ABC (H thuộc AB), kéo dài CH cắt (O;R) tại điểm D (D = C). Tiếp tuyến tại điểm A và tiếp tuyến tại điểm C của đường tròn (O;R) cắt nhau tại điểm M. Gọi I là giao điểm của OM và AC. a) Chứng minh bốn điểm M,A,O,C cùng thuộc đường tròn đường kính OM b) Hai đường thẳng MC và AB cắt nhau tại F. Chứng minh BC = 2.IO và DF là tiếp tuyến của (O;R). c) Chứng minh AF.BH = BF.AH.