cho đường tròn tâm O bán kính R và điểm A nằm ngoài đường tròn từ A kẻ tiếp tuyến AE với đường tròn tâm (O),C,E là các tiếp điểm vẽ dây EH vuông góc OA tại M a)biết R bằng ,OM bằng 3 cm tính EH b)CM AH là tiếp tuyến của đường tròn tâm O c)đường thẳng qua O vuông góc OA cắt AH tại B vẽ tiếp tuyến BF với đường tròn tâm O (F là tiếp điểm) CM EOF thằng hàng và BF.AE=R^2
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .
Cho đường tròn (O;R), OA = 3R. Từ A vẽ hai tiếp tuyến AM,AN. Gọi K là trung điểm của AN, MK cắt điểm (O) tại điểm thứ hai là B. Tia AB cắt đường tròn (O) tại điểm thứ hai là D. I là TĐ của BD. CMR:
a. CM 5 điểm A,M,N,O,I cùng thuộc 1 đường tròn. Chỉ ra tâm đường tròn, bán kính đường tròn đó
b. Góc BNM = Góc MDB
c. KN^2 = KB.KM
giúp mk vs, đang cần gấp
Cho đường tròn (O;R), đường kính AB. Lấy điếm M thuộc đường tròn (O) (AM<BM). Tiếp tuyến tại A của đường tròn tâm O cắt tia BM tại C.
1. Cm AC^2=CM.CB
2. Tia CO cắt đường tròn (O) lần lượt tại 2 điếm D và E ( điểm D nằm giữa hai điếm C và E). Cm: CM.CB=CD.CE
3. Vẽ dây AK vuông góc CO tại H.Cm: CK là tiếp tuyến của đường tròn (O).
Cho đường tròn tâm O và một điểm A ở ngoài đường tròn. Từ A kẻ hai tiếp tuyến AB, AC. C,B là hai tiếp điểm.
a, Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn.
b, CM BC vuông góc với OA
c, Gọi I là giao điểm của OA và BC
CM OB.AB=OA.IC
d, CM OC là tiếp tuyến của đường tròn đường kính AC
cho đường tròn(0; R) và điểm A nằm ngoài đường tròn sao cho OA =2R. Vẽ các tiếp tuyến AB, AC của ( 0; R) tại hai điểm phân biệt E, F( E nằm giữa A vàF). gọi H là trung điểm của EF
a, CM: ABCH thuộc đường tròn
b, Qua O vẽ đường thẳng vuông góc với OA tại O, đà thẳng này cắt AB, AC lần lượt tại I, J. Tiếp tuyến tại E của ( 0) cắt AB, AC lần lượt tại P và Q. Tính diên tích tam giác AIJ và chu vi tam giác APQ
Cho A nằm ngoài đường tròn (O) kẻ tiếp tuyến AB,AC với đường tròn O có B,C là tiếp điểm
a)Cm AO vuông góc BC
b)Trên cung nhỏ BC lấy điểm M bất kì(M khác B,C,OA).Điểm M cắt AB và AC tại D và E.Cm chu vi tam giác ADE=2AB
c)Đường thẳng vuông góc AO tại O cắt AB,AC tại P và Q.CM 4PD.QE=PQ.PQ