giải pt
\(-4^2-80x+1200=0\)
Giải PT: \(\sqrt{3x^2-30x+100}+\sqrt{8x^2-80x+216}=-2x^2+20x-41\)
tính P(x)=x7-80x6+80x5-80x4+80x3-80x2+80x + 15 với x = 79
(thầy mình nói có hai cách giải thông minh) nhưng mình mới giải được 1 cách thôi, mong các bạn giúp đỡ
thật ra bài này có 3 cách 2 cách gần giống nhau (cô giáo mk cho làm 3 cách)
\(P\left(79\right)=79^7-80.79^6+80.79^5-80.79^4+80.79^3-80.79^2+80.79+15\)
\(=79^7-\left(79+1\right).79^6+\left(79+1\right).76^5+...-\left(79+1\right).79^2+\left(79+1\right).79+15\)
\(=79^7-79^7-79^6+79^6+79^5-79^5-79^4+79^4+79^3-79^3-79^2+79+1+15\)
\(=-79^2+79+1+15=-6146\).
Tính giá trị của đa thức :
P(x) = x7 - 80x6 + 80x5 - 80x4 + ... + 80x + 15 với x = 79
Giúp giùm mik cách giải phù hợp nha , thankss
P(x)=x7−80x6+80x5−8x4+...+80x+15
⇒P(x)=x7−(x+1).x6+(x+1).x5+...+(x+1)x+15
⇒P(x)=x7−x7−x6+x6+x5−x5+...−x3−x2+x2+x+15
⇒P(x)=x+15 (1)
Thay x=79 vào (1),ta được:
P(79)=79+15=84
~ Học tốt ~
tính giá trị biểu thức
P(x)=x^7-80x^6+80x^5+80x^4+80x^3-80x^2+80x+15 tai x=79
tính P(x)=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15 với x= 79
(thầy mình nói có hai cách giải thông minh nhưng mình mới làm được 1 cách thôi mong các bạn giúp đỡ)
mình làm được cách là
x=79 nên => 80=x+1
thay 80=x+1 vào biểu thức
P(x)=x^7-(x+1)x^6+(x+1)x^5-(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x+15
P(x)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15
P(x)=x+15=79+15=94
cậu giải thích giùm mình đoạn này với P(x)=x^7-(x+1)x^6+(x+1)x^5-(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x+15
P(x)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15
P(x)=x+15=79+15=94
hay giai giup mk may phan nay nhe
cmr cac bieu thuc sau ko phu thuoc vao x:
c)C=x(x^3+x^2-3x-2)-(x^2-2)(x^2+x-1)
e)E=(x+1)(x^2-x+1)-(x-1)(x^2+x+1)
tinh gia tri cua da thuc
b)Q(x)=x^14-10x^13=10x^12-10x^11+...+10x^2-10x+10 voi x=9
c)R(x)=x^4-17x^3+17x^2_17x+20 või=16
d)S(x)=x^10-13x^9+13x^8-13X^7+...+13x^2-13x+10 voi 12
Giải phương trình:
2x8 - 9x7 + 20x6 - 33x5 + 46x4 - 66x3 + 80x2 - 72x + 32 = 0
ta thay : \(\frac{32}{2}=2^4;\frac{-72}{-9}=2^3;\frac{80}{20}=2^2;\frac{-66}{-33}=2\)chia 2 ve cho x4\(\ne0\)
dat \(x+\frac{2}{x}=y\) (1)voi |y|\(\ge2\sqrt{2}\)( dung cosi cho 1) ta co:
2(y4-8y2+8)-9(y3-6y)+20(y2-4)-33y+46=0
<=> 2y4-9y3+4y2+21y-18=0(*)
<=> \(\left[\begin{matrix}y=1\\y=2\\y=3\\y=-\frac{3}{2}\end{matrix}\right.\)
chi co y=3 la tm => \(x+\frac{2}{x}=3\Rightarrow x=\left[\begin{matrix}1\\2\end{matrix}\right.\)
chú ý : đến cho * bạn nhằm nghiệm sau đó dùng lược đồ hoocner
Cho pt X^2+2(m-1)x+m^2=0
1) Giải pt khi m=4
2) Giải pt khi m=-4
`x^2 + 2(m-1)x + m^2 = 0`
Thay `m=0` vào pt và giải ta được :
`x^2 - 6x + 16 = 0`
Vì `x^2 - 6x + 16 > 0` với mọi `x`
`=>` vô nghiệm
Vậy `S = RR`
Thay `m=-4` vào pt và giải ta được :
`x^2 + 10x + 16 = 0`
`\Delta = 10^2 - 4*1*16 = 36 > 0`
`=> \sqrt{\Delta} = 6`
`=>` Phương trình có 2 nghiệm phân biệt :
`x_1 = (-10+6)/(2*1) = -2`
`x_2 = (-10-6)/(2*1) = -8`
Vậy `S = {-2,-8}`
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Tính giá trị của đa thức \(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\) với x = 79
\(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-x^4+79x^3+x^3-79x^2-x^2+79x+x-79+94\)
\(=x^6\left(x-79\right)-x^5\left(x-79\right)+x^4\left(x-79\right)-x^3\left(x-79\right)+x^2\left(x-79\right)-x\left(x-79\right)+\left(x-79\right)+94\)
\(=\left(x^6-x^5+x^4-x^3+x^2-x+1\right)\left(x-79\right)+94\)
Thay x = 79 \(\Rightarrow C=94\)
Vậy C = 94 khi x = 79
Thay x = 79 vào C ta có:
C =\(79^7-80.79^6+80.79^5-80.79^4+80.79^3-80.79^2+80.79+15\)
C = \(79^7-\left(79+1\right).79^6+\left(79+1\right).79^5-\left(79+1\right).79^4+\left(79+1\right).79^3-\left(79+1\right).79^2+\left(79+1\right).79+15\)
C = \(79^7-79^7+79^6-79^6+79^5-79^5+79^4-79^4+79^3-79^3+79^2-79^2+79+15\)
C = 79 + 15 = 94
\(C=x^7-80x^6+80x^5-80x^4+80x^3-80x^2+80x+15\)
Ta có: \(x=79\Rightarrow80=79+1=x+1\)
\(C=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x+15\)
\(C=x^7-x^7-x^6+x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x+15\)
\(C=x+15=79+15=94\)
Chúc bạn hok tốt!