Giải phương trình (3x-2)(x+1)2(3x+8)=-16
giải phương trình (3x-2)((x+1)^2)(3x+8)= -16
=>(9x^2+24x-6x-16)(x^2+2x+1)=-16
=>(9x^2+18x-16)(x^2+2x+1)=-16
=>(9x^2+18x+9-25)(x^2+2x+1)=-16
=>[9(x+1)^2-25](x+1)^2=-16
=>9(x+1)^4-25(x+1)^2+16=0
Đặt (x+1)^2=a
=>9a^2-25a+16=0
=>a=1 hoặc a=16/9
=>(x+1)^2=1 hoặc (x+1)^2=16/9
=>\(x\in\left\{0;-2;\dfrac{1}{3};-\dfrac{7}{3}\right\}\)
`1.` giải pt :
`a)|-7x|=3x+16`
`b)(x-1)/(x+2)-x/(x-2)=(5x-8)/(x^2-4)`
`2.` giải bất phương trình sau và biểu diễn nghiệm trên trục số
`7x+5<3x-11`
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
Giải các phương trình sau:
1) \(\sqrt{2x+4}-2\sqrt{2-x}=\dfrac{12x-8}{\sqrt{9x^2+16}}.\)
2) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}.\)
Giải phương trình:
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9\)
\(\Leftrightarrow\left(9x^2+18x-16\right)\left(9x^2+18x+9\right)=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)
\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
Tập nghiệm của pt là: \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)
\(\left(3x-2\right)\left(x-1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow\left[\left(3x-2\right)\left(3x+8\right)\right]\left[9\left(x+1\right)^2\right]=-16.9=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)-144=-144\)
\(\Leftrightarrow\left(9x^2+18x\right)^2-7\left(9x^2+18x\right)=0\)
\(\Leftrightarrow\left(9x^2+18x\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow9x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
Tập nghiệm của phương trình là : \(S=\left\{0;-2;\frac{1}{3};\frac{-7}{3}\right\}\)
Anh Ngáo coppy trắng trợn là ko tốt :v
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(9x^4+18x^3+9x^2+24x^3+48x^2+24x-6x^3-12x^2-6x-16x^2-32x-16=-16\)
\(9x^4+36x^3+29x^2-14x-16=-16\)
\(9x^4+36x^3+29x^2-14x=0\)
\(x\left(9x^3+36x^2+29x-14\right)=0\)
\(x=0;-\frac{7}{3};\frac{1}{3};-2\)
1.Giải các phương trình sau : a,7x+35=0 b, 8-x/x-7 -8 =1/x-7 2.giải bất phương trình sau : 18-3x(1-x)_< 3x^2-3x
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
1.
\(a,7x+35=0\\ \Rightarrow7x=-35\\ \Rightarrow x=-5\\ b,ĐKXĐ:x\ne7\\ \dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\\ \Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{8\left(x-7\right)}{x-7}-\dfrac{1}{x-7}=0\\ \Leftrightarrow\dfrac{8-x-8x+56-1}{x-7}=0\\ \Rightarrow-9x+63=0\\ \Leftrightarrow-9x=-63\\ \Leftrightarrow x=7\left(ktm\right)\)
2.đề thiếu
Giải phương trình sau:
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
<=> \(\left(3x-2\right)\left(x+1\right)^2.3^2.\left(3x+8\right)+144=0\)
<=> \(\left(3x-2\right)\left(3x+3\right)^2\left(3x+8\right)+144=0\) (*)
Đặt \(3x+3=t\) Khi đó pt (*) trở thành:
\(\left(t-5\right)t^2\left(t+5\right)+144=0\)
<=> \(t^4-25t^2+144=0\)
<=> \(\left(t-4\right)\left(t-3\right)\left(t+3\right)\left(t+4\right)=0\)
đến đây bn tự giải tiếp nhé
Giải các phương trình sau:
\(e.\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)
\(f.\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)
\(g.\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)
\(h.\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Giải phương trình: \(\left(\sqrt{4x^4-12x^3+9x^2+16}-2x^2+3x\right)\left(\sqrt{x+3}+\sqrt{x-1}\right)=8\)
ĐKXĐ: \(x\ge1\).
Phương trình đã cho tương đương:
\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)
\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)
\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).
Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).
Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).
Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).
Vậy...
Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!