Cho Δ ABC nhọn, cân tại A. Hai đường cao BK và CE cắt nhau ở H.
a) Chứng minh Δ AEC=Δ AKB.
b) Kẻ BG⊥BC (G ∈ EK). Chứng minh BG//AH.
Mọi người giúp em với ạ!!!
Cho tam giác ABC nhọn cân tại A.Hai đường cao BK và CE cắt nhau tại H. a)Chứng minh tam giác AEC=tam giác AKB b)Kẻ BG vuông góc với BC (G thuộc EK) c)Kẻ Ax song song với BC cắt BK tại M.Trên tia đối của tia AM lấy điểm Q sao cho AM=AQ.Chứng minh C;E;Q thẳng hàng
a) Xét ΔAEC vuông tại E và ΔAKB vuông tại K có
AC=AB(ΔABC cân tại A)
\(\widehat{EAC}\) chung
Do đó: ΔAEC=ΔAKB(cạnh huyền-góc nhọn)
Cho tam giác ABC nhọn cân tại A.Hai đường cao BK và CE cắt nhau tại H. a)Chứng minh tam giác AEC=tam giác AKB b)Kẻ BG vuông góc với BC (G thuộc EK) c)Kẻ Ax song song với BC cắt BK tại M.Trên tia đối của tia AM lấy điểm Q sao cho AM=AQ.Chứng minh C;E;Q thẳng hàng
a) Xét ΔAEC vuông tại E và ΔAKB vuông tại K có
AC=AB(ΔABC cân tại A)
\(\widehat{BAK}\) chung
Do đó: ΔAEC=ΔAKB(cạnh huyền-góc nhọn)
Cho tam giác ABC nhọn cân tại A.Hai đường cao BK và CE cắt nhau tại H.
a)Chứng minh tam giác AEC=tam giác AKB
b)Kẻ BG vuông góc với BC (G thuộc EK)
c)Kẻ Ax song song với BC cắt BK tại M.Trên tia đối của tia AM lấy điểm Q sao cho AM=AQ.Chứng minh C;E;Q thẳng hàng
Chỉ cần câu C thôi
Cho tam giác ABC nhọn cân tại A.Hai đường cao BK và CE cắt nhau tại H.
a)Chứng minh tam giác AEC=tam giác AKB
b)Kẻ BG vuông góc với BC (G thuộc EK)
c)Kẻ Ax song song với BC cắt BK tại M.Trên tia đối của tia AM lấy điểm Q sao cho AM=AQ.Chứng minh C;E;Q thẳng hàng
Chỉ cần câu C thôi
Tam giác AMK = AQE ( c-g-c)
vì AE = AK ( theo câu a)
góc B= MAK = QAE =C ( SLT)
AM =AQ
=> góc E= góc K =90
=> QEC = 90 +90 = 180
=> KL
Cho Δ ABC cân tại A. Kẻ AH vuông góc với BC tại H. Qua H kẻ đường thẳng // với AC cắt AB tại D
a) CM: Δ ABH = Δ ACH
b) CM: Δ ADH cân và DH = \(\dfrac{1}{2}\)AB
c) gọi G là giao điểm của AH và CD. Qua A kẻ đường thẳng // BC cắt đường thẳng BG tại K. CM: AB // CK
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh rằng: Δ AEF Δ ABC. b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF? c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
giúp mình câu c với ạ
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:
\(AE\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF\(\sim\)ΔACB
Cho Δ ABC vuông tại A , đường cao AH ( H thuộc BC )
a) Tính BH , AH biết AB =20cm ,BC=25cm
b) Từ B kẻ đường thẳng vuông góc với đường trung tuyến AD của tam giác ABC tại E cắt AC tại F . Chứng Minh Δ BHF đồng dạng với Δ BEC
giải chi tiết giúp mk vớiiiiii ạ
Cho Δ ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC.
a) Chứng minh rằng: Δ AEF Δ ABC.
b) Cho AH = 4,8cm; BC = 10cm. Tính SΔAEF?
c) Lấy điểm I đối xứng với H qua AB. Từ B kẻ đường vuông góc với BC cắt AI ở K. Chứng minh rằng KC, AH, EF đồng quy tại một điểm.
Cho tam giác ABC có ba góc nhọn, các điểm M, N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H
a) Nối MN, Δ AHB đồng dạng với tam giác nào?
b) Gọi G là trọng tâm Δ ABC, chứng minh Δ AHG đồng dạng với Δ MOG?
c) Chứng minh ba điiểm M, O, G thẳng hàng?