\(20^{n^{ }}+16^n-3^n-1\) chia hết cho 323 (n chẵn, n thuộc N)
vs n là số nguyên dương chẵn. CMR: 20^n+16^n+3^n-1 chia hết cho 323
Chứng minh rằng với mọi n thuộc N*, n chẵn thì :
( 20n + 16n -- 3n -- 1 ) chia hết cho 323
Nhận thấy : \(323=17.19\)và ƯCLN ( 17 ; 19 ) = 1 nên ta chứng minh \(\left(20^n-1+16^n-3^n\right)\)\(⋮\)\(17\)và \(19\)
Ta có :
\(20^n-1⋮\left(20-1\right)=19;16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn ) (1)
Mặt khác :
\(\left(20^n+16^n+3^n+1=20^n-3^n+16^n-1\right)\)
Và \(20^n-3^n⋮\left(20-3\right)=17;16^n-1⋮\left(16+1\right)=17\) (2)
Từ (1) và (2) suy ra đpcm
với n là số tự nhiên chẵn chứng minh;(20^n+16^n-3^n-1)chia hết cho 323
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n)
Nhận xét⎨(16n−1)⋮17 (20n−3n)⋮17
⇒A⋮17 (1)
+Chứng minh A⋮19A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)
Nhận xét ⎨(16n+3n)⋮19 (20n−1)⋮19
⇒A⋮19 (2)
Mà (17;19)=1(17;19)=1
Từ (1) và (2)⇒A⋮BCNN(17.19)
hay A⋮323 (đpcm)
Với n là số tự nhiên chẵn,chứng minh:(20^n+16^n-3^n-1) chia hết cho 323
Với n chẵn CMR: (20n+16n-3n-1) chia hết cho 323
bài này đơn giản nhưng bạn chỉ hỏi thành 6b LDK nên thôi vây
Cho n là số chẵn . Chứng minh 20n+16n-3n-1 chia hết cho 323
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16n-1)+ (20n-3n)
Nhận xét:⎨(16n−1)⋮17(20n−3n)⋮17
=>A⋮17(1)
+Chứng minh A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16n+3n)+ (20n-1)
Nhận xét ⎨(16n+3n)⋮19(20n−1)⋮19
⇒A⋮19(2)
Mà (17;19)=1
Từ (1) và (2)⇒A⋮(17.19)⇒A⋮(17.19)
hayA⋮323 (đpcm)
cho n là số chẵn
chứng minh: \(20^n+16^n-3^n-1\) chia hết cho 323 (hoặc chứng minh hộ mik chia hết cho 19)
giúp mik với mik cảm ơn! (mik cần trước ngày 20/8)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
CMR: n là số chẵn thì
20n +16n -3n -1 chia hết cho 323
Dựa vào t/c: a^n -b^n chia hết cho a+b với mọi n chẵn
20n+16n-3n-1 \(⋮\)321
vì 323=17.19
Ta thấy : 20n+16n-3n-1
=(20n-1) + (16n-3n)
20n-1\(⋮\)19 với n chẵn
\(\Rightarrow\)(20n-1) + ( 16n -3n)\(⋮\)19 (1)
Mặt khác : 20n+16n-3n-1
=( 20n-3n) + ( 16n-1)
20n-3n\(⋮\)17 với n chẵn
16n-1 \(⋮\)17 với n chẵn
\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17 (2)
Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19
\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)
Bài 1: Với n chẵn CMR:
A = \(20^n+16^n-3^n-1\) chia hết cho 323
Bài 2: Tìm a,b thuộc N sao cho:
5a + 7b = 90