Cho tam giác ABC vuông ở A , C = 60 độ. Tia phân giác cắt AB ở E. Kẻ EK vuông BC ( K thuộc BC ). BI vuông góc CE ( I thuộc E). Chứng minh rằng : a) AC = CK, b) CE là đường trung trực của AK, c) tam giác BEC cân, d) Ba đường thẳng CA,KE,BI đồng quy
Cho tam giác ABC vuông ở A , C = 60 độ. Tia phân giác cắt AB ở E. Kẻ EK vuông BC ( K thuộc BC ). BI vuông góc CE ( I thuộc E). Chứng minh rằng : a) AC = CK, b) CE là đường trung trực của AK, c) tam giác BEC cân, d) Ba đường thẳng CA,KE,BI đồng quy
a) Xét \(\Delta\)ACE và \(\Delta\)KCE có: CE chung; ^ACE = ^KCE ( CE là phân giác ^ACB); ^EAC = ^EKC = 90o
=> \(\Delta\)ACE = \(\Delta\)KCE ( cạnh huyền - góc nhọn ) (1)
=> CA = CK
b) (a) => C thuộc đường trung trực của AK
(1) => EA = EK => E thuộc đường trung trực của AK
=> CE là đường trung trực của AK
c) Xét \(\Delta\)ACB có ^A = 90o ; ^C=60o => ^B = 30o
=> ^EBK = 60o
Mặt khác: ^KCE = ^ACE = ^ACB : 2 = 30o
=> ^EBC = ^ECB
=> \(\Delta\)BEC cân tại E
d) Gọi T là giao điểm của CA và BI
Xét \(\Delta\)TCB có BA vuông CT; CI vuông TB
mà CI cắt BA tại E
=> E là trực tâm của \(\Delta\)TCB
=> TE vuông BC mà EK vuông BC
=> T; E; K thẳng hàng
=> CA; KE; BI đồng quy tại T
Hình ko biết vẽ
a/ Xét hai tam giác vuông ABI và EBI có:
góc ABI = góc EBI (BI là pg góc ABC)
BI: cạnh chung
=> tam giác ABI = tam giác EBI
=> BA = BE
Mà góc ABC = 600
=> tam giác BAE đều.
b/ Ta có: tam giác ABC vuông tại A
=> góc B + góc C = 900
hay 600 + góc C = 900
=> góc C = 300
Ta lại có: BI là pg góc ABC
=> góc ABI = góc IBC = 600 / 2 = 300
=> góc IBC = góc ICB = 300
=> tam giác IBC cân tại I
Mà IE là đường cao của tam giác IBC
=> IE cũng là trung tuyến của tam giác IBC
=> EB = EC (đpcm)
c/ Trong tam giác ABI vuông tại A
=> góc A > góc I
=> IB > AB
Trong tam giác ICE vuông tại E :
=> góc E > góc I
=> IC > EC
Ta có: IB > AB; IC > EC
=> IB + IC > AB + EC (đpcm).
d/ Ta có: BM là đường cao của tam giác BKC
Ta có: CA là đường cao của tam giác BKC
Mà BM cắt CA tại I
=> I là trực tâm của tam giác BKC
KE là đường cao còn lại của tam giác BKC (KE vuông góc BC)
=> I thuộc KE
=> K; I; E thẳng hàng.
cho tam giác ABC vuông ở C có góc A =60 độ. tia phân giác của góc BAC cắt BC ở E. kẻ EK vuông góc với AB (K thuộc AB). kẻ BD vuông góc với tia AE (D thuộc AE). chứng minh:
a) AC=AK
b) AE là đường trung trực của đoạn thẳng CK
c) KA=KB
d) AC<EB
Em tham khảo câu a, b, c tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
d) Ta thấy EB = AE
Mà theo quan hệ giữa đường vuông góc với đường xiên thì AC < AE
Vậy nên AC < EB.
3.cho tam giác ABC vuông ở A có góc C=60 độ .Tia phân giác của góc ACB cắt AB ở E .kẻ EK vuông góc với BC(K thuộc BC) .Kẻ BD vuông góc với CE(Dthuộc CE).Chứng minh
a.AC=CK và AK vuông góc với CE
b.tam giác ECB là tam giác cân
c.giả sử CA cắt BD tại N chứng minh M,E,K thẳng hàng .
d.tam giác MAB là tam giác gì ?Vì sao?
Cho tam giác ABC vuông ở C có góc A = 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông AB ( K thuộc AB) . Gọi N là giao điểm của EK và AC
a) Chứng minh tam giác ACE = tam giác AKE
b) Chứng minh AE là đường trung trực của CK . So sánh EC và EB
c) Chứng minh NB // CK
Cho tam giác ABC vuông ở C, có góc A =60 độ, tia phân giác của góc BAC cắt BC ở E, kẻ EK vuông góc với AB(K thuộc AB), kẻ BD vuông góc AE(D thuộc AE).Chứng minh :a)AD là trung trực của CK.b) AK=KB. c) AD=BC Giúp mình với :3 . Mình đang cần gấp
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
=>AD là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
a: \(\widehat{ABC}=30^0\)
b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
c: Ta có: ΔACE=ΔAKE
nên AC=AK; EC=EK
hay AE là đường trung trực của CK
d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Cho tam giác ABC vuông ở C, có góc A =60 độ, tia phân giác của góc BAC cắt BC ở E, kẻ EK vuông góc với AB(K thuộc AB), kẻ BD vuông góc AE(D thuộc AE).Chứng minh :
a) AK=KB.
b) AD=BC
a)Vì AE là phân giác của góc BAC nên góc EAB=góc EBA
=> tg EAB cân tại E mà có EK là đg cao nên EK đồng thời là trung tuyên nên AK=BK
b)Xét tg ABC vuông tại C và tg BAD vuông tại D có
AB chung
ABC=BAD=30 độ
=> tg BAD=tg ABC(ch-gn)
=>AD=BC