Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyển Trần Thị
Xem chi tiết
Trần Hữu Ngọc Minh
29 tháng 1 2018 lúc 14:48

chuẩn hóa \(a^2+b^2+c^2=1\)

\(VT\ge\frac{3\sqrt{3}}{2}.\)

chúng ta cần chứng minh:\(\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}a^2}{2}\Leftrightarrow\frac{a}{1-a^2}\ge\frac{3\sqrt{3}a^2}{2}\)

\(\Leftrightarrow\frac{1}{1-a^2}\ge\frac{3\sqrt{3}a}{2}.\)

\(\Leftrightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}.\)

\(\Leftrightarrow a^2\left(1-a^2\right)^2\le\frac{4}{27}.\)

\(\)

\(\Leftrightarrow2a^2\left(1-a^2\right)\left(1-a^2\right)\le\frac{\left(2a^2+1-a^2+1-a^2\right)^3}{27}=\frac{8}{27}.\left(dung\right)\)

Nên\(a^2\left(1-a^2\right)^2\le\frac{4}{27}\left(luondung\right)\)

Tương tự ta có: \(\frac{b}{a^2+c^2}\ge\frac{3\sqrt{3}b^2}{2};\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}c^2}{2}\)

Cộng lại ta có \(đpcm\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Thắng Nguyễn
29 tháng 1 2018 lúc 17:15

Xem câu hỏi

Tuyển Trần Thị
Xem chi tiết
pham thi thu trang
8 tháng 11 2017 lúc 20:39

\(P\ge\frac{b^2+c^2}{a^2}+\frac{4a^2}{b^2+c^2}=\left(\frac{b^2+c^2}{a^2}+\frac{a^2}{b^2+c^2}\right)+\frac{3a^2}{b^2+c^2}\ge5\)

dấu " = "  <=>   \(b=c=\frac{a}{\sqrt{2}}\)

Nguyễn Anh Quân
8 tháng 11 2017 lúc 14:34

Có : (a-b)^2 >= 2ab 

<=> a^2+b^2-2ab>=0

<=>a^2+b^2>=2ab (1)

<=> a^2+b^2+2ab>=4ab

<=> (a+b)^2 >=4ab (2)

Với a,b > 0 thì chia cả 2 vế (2) cho 4ab.(a+b) ta được :

a+b/ab >= 4/a+b

<=> 1/a + 1/b >= 4/a+b (3)

Áp dụng bđt (3) thì P >= 1/a^2.(b^2+c^2) +a^2.4/(b^2+c^2)

Áp dụng tiếp bđt (1) thì P >= 2\(\sqrt{\frac{1}{a^2}.\left(b^2+c^2\right).a^2.\frac{4}{b^2+c^2}}\) = 2.2 = 4

Dấu "=" xảy ra <=> (b^2+c^2)/a^2 = a^2/(b^2+c2) và b^2=c^2 <=> a^2 = b^2+c^2 và b^2=c^2 <=> a^2=2b^2=2c^2

Vậy Min P = 4 <=> a^2 = 2b^2 = 2c^2 

pham van vip
Xem chi tiết
nguyễn thùy linh
21 tháng 2 2017 lúc 22:34

với a,b,c>0

áp dung bđt \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)( bđt svacxo) ta có :

A=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}=\frac{2016}{2}=1008\)

=> min A=1008 dấu bằng xảy ra <=>a=b=c=672 

Trần Vương Quốc Đạt
Xem chi tiết
Thắng Nguyễn
24 tháng 1 2018 lúc 23:00

nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé

alibaba nguyễn
23 tháng 1 2018 lúc 9:23

Nhỏ nhất hay lớn nhất

Trần Vương Quốc Đạt
23 tháng 1 2018 lúc 22:24

Sorry, tìm GTLN

Trần Đông Dun
Xem chi tiết
Mai Hiệp Đức
Xem chi tiết
dong anh duy
3 tháng 1 2020 lúc 20:10

dit me

Khách vãng lai đã xóa
Đinh Đức Hùng
3 tháng 1 2020 lúc 21:27

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\) ta có \(\frac{1}{x}+\frac{1}{y}=2\)

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{\frac{a}{b}+1}{\frac{2a}{b}-1}+\frac{\frac{c}{b}+1}{\frac{2c}{b}-1}=\frac{x+1}{2x-1}+\frac{y+1}{2y-1}\)

\(=1+\frac{3}{2}\left(\frac{1}{2x-1}+\frac{1}{2y-1}\right)=1+\frac{3}{2}.\frac{2x+2y-2}{4xy-2\left(x+y\right)+1}=1+3.\frac{x+y-1}{1}\ge4\)

Do \(\frac{1}{x}+\frac{1}{y}=2\Rightarrow x+y\ge2\)

đpcm

Khách vãng lai đã xóa
nguyen the anh
Xem chi tiết
nguyen the anh
Xem chi tiết
Nguyễn Văn Tiến
20 tháng 3 2016 lúc 20:55

cmtt \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}+\frac{a+b+b+c+c+a}{4}\ge a+b+c\)

\(A+\frac{1}{2}\ge1\)

Nguyễn Văn Tiến
20 tháng 3 2016 lúc 20:41

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{4}}=a\)

cmtt 

A+1/2\(\ge1\Rightarrow A\ge\frac{1}{2}\)

A là biểu thức bên trái nha

Nguyễn Huyền Anh
Xem chi tiết
Luân Đào
21 tháng 5 2019 lúc 19:02

a.

\(A=\frac{1}{ab}+\frac{1}{a^2+b^2}=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge\frac{4}{a^2+2ab+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=6\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

b.

\(B=\frac{2}{ab}+\frac{3}{a^2+b^2}=3\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{1}{2ab}\)

\(\ge3\cdot\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=14\)

Dấu "=" khi \(a=b=\frac{1}{2}\)

c.

Ta có:

\(x^2+y^2\ge2xy\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\) với mọi x,y

Áp dụng ta có:

\(C=\left(a+\frac{1}{b}\right)^2+\left(b+\frac{1}{a}\right)^2\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

2.

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\frac{a}{\sqrt{x}}+\sqrt{y}\cdot\frac{b}{\sqrt{y}}\right)^2\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{a^2}{x}+\frac{b^2}{y}\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

Áp dụng nó ta chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Áp dụng vào bài làm:

\(D=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)

\(\ge\frac{\left(a+b+c\right)^2}{ab+ca+bc+ab+ca+bc}=\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)