Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đoàn Tuấn Anh

cho 3 so duong a,b,c biet a+b+c=6

timf min Q=\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)

Đặng Quang Huy
7 tháng 6 2020 lúc 10:26

Trước tiên cần chứng minh với mọi m,n,p thuộc R và x,y,z>0 ta có

m^2/x +n^2/y +p^2/z >=(a+b+c)^2/x+y+z  (1)

 Dấu "=" xảy ra <=>m/x=n/y=p/z

Thật vậy m,n thuộc R,x,y>0 ta có 

m^2/x+n^2/y >=(m+n)^2/x+y  (2)

<=> (m^2y +n^2x)(x+y) >= xy(m+n)^2

sau đó khai triển ra ta được (nx-my)^2 >=0 (đúng)

Dấu "="xảy ra <=>m/x=n/y

Áp dụng BĐT (2) ta có

m^2/x +n^2/y +p^2/z >=(m+n)^2/x+y +p^2/z >= (m+n+p)^2/x+y+z

Dấu "=" xảy ra <=> m/x=n/y=p/z

Áp dụng BĐT (1) ta có

Q=a^2/a+b b^2/b+c c^2/c+a >= (a+b+c)^2/2(a+b+c)=3 (do a+b+c=6)

Dấu "=" xảy ra <=> a=b=c=2

Khách vãng lai đã xóa