Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Fairy tail
Xem chi tiết
HOW TO LÀM
Xem chi tiết
Khôi Bùi
23 tháng 4 2022 lúc 18:25

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

Vũ Kiều Trang
Xem chi tiết
Diệu Anh
24 tháng 8 2021 lúc 10:52

D = (2x-1)3  -2x(2x-3)(2x+3) + 13x(x-1)

D= (2x)3 - 3. (2x)2 .1 + 3.2x .12 -13 - 2x(2x-3)(2x+3) + 13x(x-1)

D= 8x3 - 12x+ 6x -1 - 2x(4x2 -9) + 13x2 -13x

D= 8x3 -12x2 + 6x-1 - 8x3 + 18x + 13x2 -13x

D= (8x3 - 8x3) -(12x2 -13x2) + (6x + 18x -13x) - 1

D= x2 + 11x -1 

D = x2 + 2x . 11/2 +(11/2)2 -125/4

D= (x+ 11/2)2 - 125/4

Với mọi x thì (x+11/2)2 >= 0

=> (x+11/2)2 - 125/4 >= -125/4

Dấu bằng xảy ra khi: (x+11/2)2 =0

=> x + 11/2 =0 

=> x= -11/2

Vậy giá trị nhỏ nhất của D là -125/4 khi x= -11/2

Khách vãng lai đã xóa
Nguyễn Thị Huế
Xem chi tiết
shitbo
12 tháng 12 2021 lúc 22:28

\(D=\sqrt{\left(x+\sqrt{3}\right)^2}+\sqrt{\left(x-\frac{1}{2}\right)^2}\)

\(D=|x+\sqrt{3}|+|x-\frac{1}{2}|=|x+\sqrt{3}|+|\frac{1}{2}-x|\ge|x+\sqrt{3}+\frac{1}{2}-x|\)

=sqrt(3)+1/2.

Vậy giá trị nhỏ nhất cần tìm là: sqrt(3)+1/2. Dấu bằng thì bạn tham khảo bất đẳng thức:

lal+lbl geq la+bl

Khách vãng lai đã xóa
Hey hey
Xem chi tiết
Phan Nghĩa
2 tháng 8 2020 lúc 19:56

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)

\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)

\(< =>B=\frac{3x-4}{2x^2-4}\)

\(b,\)Với \(x=-2\)thì

 \(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
2 tháng 8 2020 lúc 20:03

\(ĐKXĐ:x\ne2;x\ne0\)

a

\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)

\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)

b

\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)

c

\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)

\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)

\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)

Xét các trường hợp của x thì ra nghiệm bạn nhé

d

\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)

Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất

Casio sẽ giúp chúng ta phần này

e

Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)

g

\(\left|B\right|+3< 2x-1\)

Làm hệt như câu c nhé :D 

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
2 tháng 8 2020 lúc 20:06

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

ĐKXĐ : \(x\ne0,x\ne2\)

a) \(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x+2\right)\left(x-2\right)}{x\left(x-2\right)}-\frac{x\cdot x}{x\left(x-2\right)}\right)\)

\(B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4-x^2}{x\left(x-2\right)}\right)\)

\(B=\frac{3x-4}{x\left(x-2\right)}\cdot\frac{x\left(x-2\right)}{-4}\)

\(B=\frac{3x-4}{-4}=\frac{-3x+4}{4}\)

b) Thế x = -2 ( tmđk ) vào B ta được :

\(B=\frac{-3\cdot\left(-2\right)+4}{4}=\frac{10}{4}=\frac{5}{2}\)

c) \(\left|B\right|-2x=5\)

\(\Leftrightarrow\left|\frac{-3x+4}{4}\right|-2x=5\)

\(\Leftrightarrow\frac{-3x+4}{4}-2x=5\)

\(\Leftrightarrow\frac{-3x+4}{4}-\frac{8x}{4}=5\)

\(\Leftrightarrow\frac{-3x+4-8x}{4}=5\)

\(\Leftrightarrow\frac{-11x+4}{4}=5\)

\(\Leftrightarrow-11x+4=20\)

\(\Leftrightarrow-11x=16\)

\(\Leftrightarrow x=-\frac{16}{11}\)

Nhờ các bạn khác làm nốt ạ -.-

Khách vãng lai đã xóa
Trần Nguyễn Khánh Linh
Xem chi tiết
missing you =
3 tháng 7 2021 lúc 10:50

\(a,A=x^2-2x+2=\left(x-1\right)^2+1\ge1\)

dấu"=" xảy ra<=>x=1

\(b,B=2x^2-5x+2=2\left(x^2-\dfrac{5}{2}x+1\right)=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{9}{16}\right)\)

\(=2\left[\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{16}\right]=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

dấu"=" xảy ra<=>x=5/4

c,\(C=x^2+2xy+4y^2+3=\left(x+y\right)^2+3\left(y^2+1\right)\ge3\)

dấu"=" xảy ra<=>x=y=0

d,\(D=\left|x-1\right|+|2x-1|=|1-x|+|2x-1|\ge|1-x+2x-1|\)

\(=|x|\ge0\)

dấu"=" xảy ra<=>\(x=0\)

ZzzvuongkhaiZzz
Xem chi tiết
Xuân Trà
Xem chi tiết
Hoàng Minh Hoàng
4 tháng 8 2017 lúc 8:21

Nhân chéo y lên trừ đi rồi dùng denta là xong,dễ lắm

Hoàng Minh Hoàng
4 tháng 8 2017 lúc 9:50

y>0 với mọi x suy ra 2x^2y-xy+4y=x^2+2x+3>>>(2y-1)x^2-(y-2)x+(4y-3)=0(1)

Xét 2y-1=0 suy ra y=1/2 suy ra x=2/3(1)

Xét 2y-1 khác 0 pt trơ thành pt bậc 2 ẩn x suy ra delta=(y-2)^2-4(4y-3)(2y-1)>=0

suy ra 31y^2-36y+8<=0 rồi tìm được khoảng của y rồi so sánh với (1) là y=1/2 ta sẽ có GTLN và GTNN của y

Võ Phương Diễm
Xem chi tiết
Hoàng Tuấn Hùng
21 tháng 3 2020 lúc 20:31

Ta có

\(A=\frac{x^2+2x-1}{x^2-2x+3}\left(ĐKXĐ:\forall x\inℝ\right)\)

\(\Leftrightarrow A.\left(x^2-2x+3\right)=x^2+2x-1\)

\(\Leftrightarrow\left(A-1\right).x^2-2\left(A+1\right)x+3A+1=0\left(1\right)\)

Do \(\forall x\inℝ\)ta luôn có một giá trị A tương ứng nên phương trình (1) luôn có nghiệm

\(\Rightarrow\Delta^'_x\ge0\)

\(\Leftrightarrow\left(A+1\right)^2-\left(3A+1\right)\left(A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+4A+2\ge0\)

\(\Leftrightarrow1-\sqrt{2}\le A\le1+\sqrt{2}\)

Nếu \(A=1-\sqrt{2}\)thì thay vào trên ta được \(x=1-\sqrt{2}\)

Nếu \(A=1+\sqrt{2}\)thì thay vào trên ta được 

Vậy \(\hept{\begin{cases}MinA=1-\sqrt{2}\Leftrightarrow x=1-\sqrt{2}\\MaxA=1+\sqrt{2}\Leftrightarrow x=1+\sqrt{2}\end{cases}}\)

Khách vãng lai đã xóa