Giải phương trình:
|4x|=|x+30|
Giải phương trình: 1/3(x-2)+1/4x(x-2)-1/5(x-2)=23/30
Ta có : \(\dfrac{1}{3}\left(x-2\right)+\dfrac{1}{4}x\left(x-2\right)-\dfrac{1}{5}\left(x-2\right)=\dfrac{23}{30}\)
\(\Rightarrow20\left(x-2\right)+15x\left(x-2\right)-12\left(x-2\right)=46\)
\(\Leftrightarrow15x^2-30x+8x-16-46=0\)
\(\Leftrightarrow15x^2-22x-62=0\)
( Đến đây ra vô tỉ luôn : vvvv ; không biết đề này đúng chưa :vvv0
Bạn tham khảo ô này
để soạn thảo câu hỏi chính xác nha :vvvv
Giải phương trình
\(3\left(x+1\right)\sqrt{x^3+3x^2+4x+4}=x^3+4x^2-13x-30\)
nhờ các cao nhân giải e bài này với ạ
GIẢI PHƯƠNG TRÌNH VÔ TỶ BẰNG PHƯƠNG PHÁP BẤT ĐẲNG THỨC
Giải phương trình
\(\sqrt{x^3+2x}+\sqrt{3x-1}=\sqrt{x^3+4x^2+4x+1}\)
Dạ em không biết ạ,tại vì em mới học lớp 4 ạ,em xin lỗi ạ
giải phương trình:\(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
giải bất phương trình: 2x+3<6-(3-4x)
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
giải phương trình vô tỉ sau
\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2008\)
Trước tiên ta chứng minh:
\(-2005x\sqrt{4-4x}\le2005\left(x^2-x+1\right)\)
Với \(x\ge0\)thì bất đẳng thức đúng.
Với \(x< 0\)
\(\left(-x\sqrt{4-4x}\right)^2\le\left(x^2-x+1\right)^2\)
\(\Leftrightarrow\left(x^2+x-1\right)^2\ge0\)đúng
Quay lại bài toán ta có:
\(\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006\ge2006\)
\(\Leftrightarrow2006\le\left(x-x^2\right)\left(x^2+3x+2007\right)-2005x\sqrt{4-4x}\le\left(x-x^2\right)\left(x^2+3x+2007\right)+2005\left(x^2-x+1\right)\)
\(\Leftrightarrow\left(x^2+x-1\right)^2\le0\)
\(\Rightarrow x^2+x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{cases}}\)
PS: Để số 2008 t không giải ra nên thay số 2006 giải được. Chắc bác chép nhầm đề.
$(x-x^2)(x^2+3x+2007)-2005x\sqrt{4-4x}=30\sqrt[4]{x^2+x-1}+2006$ - Phương trình - hệ phương trình - bất phương trình - Diễn đàn Toán học
Giải các phương trình sau:
a) \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
b) \(\dfrac{x+5}{x-1}=\dfrac{x+1}{x-3}-\dfrac{8}{x^2-4x+3}\)
a, đk : x khác 5;-6
\(x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
\(\Leftrightarrow2x+61=23x+61\Leftrightarrow21x=0\Leftrightarrow x=0\)(tm)
b, đk : x khác 1;3
\(x^2+2x-15=x^2-1-8\Leftrightarrow2x-15=-9\Leftrightarrow x=3\left(ktmđk\right)\)
pt vô nghiệm
a, đk : x khác 5;-6
x2+12x+36+x2−10x+25=2x2+23x+61x2+12x+36+x2−10x+25=2x2+23x+61
⇔2x+61=23x+61⇔21x=0⇔x=0⇔2x+61=23x+61⇔21x=0⇔x=0(tm)
b, đk : x khác 1;3
x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)x2+2x−15=x2−1−8⇔2x−15=−9⇔x=3(ktmđk)
pt vô nghiệm
a: \(\Leftrightarrow\left(x+6\right)^2+\left(x-5\right)^2=2x^2+23x+61\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>x=0(nhận)
b: \(\Leftrightarrow\left(x+5\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)-8\)
\(\Leftrightarrow x^2+2x-15=x^2-1-8\)
=>2x-15=-9
=>2x=-6
hay x=-3(nhận)
Giải phương trình: \(x+\sqrt{4x^2-4x+1}=2\)
\(x+\sqrt{4x^2-4x+1}=2\left(đk:x\le2\right)\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=2-x\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2-x\left(2\ge x\ge\dfrac{1}{2}\right)\\2x-1=x-2\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
\(x+\sqrt{4x^2-4x+1}=2\)
\(\Leftrightarrow x+\sqrt{\left(2x\right)^2-2.2x.1+1^2}=2\)
\(\Leftrightarrow x+\sqrt{\left(2x-1\right)^2}=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
\(\Leftrightarrow2x-1=2-x\) hoặc \(2x-1=x-2\)
\(\Leftrightarrow3x=3\) \(\Leftrightarrow x=-1\)
\(\Leftrightarrow x=1\)
Vậy S = \(\left\{1;-1\right\}\)
Giải phương trình : (21/x^2-4x+10) -x^2-4x-4=0
1.Giải phương trình:
\(\sqrt{x^2-4}-x^2+4=0\)
2.Giải phương trình:
\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2