Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công Minh Phạm Bá
Xem chi tiết
khoimzx
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 5 2020 lúc 20:29

\(\frac{a}{b+2c}+\frac{a}{b+2a}\ge\frac{4a}{2a+2b+2c}=\frac{2a}{a+b+c}\)

Tương tự: \(\frac{b}{c+2a}+\frac{b}{c+2b}\ge\frac{2b}{a+b+c}\) ; \(\frac{c}{a+2b}+\frac{c}{a+2c}\ge\frac{2c}{a+b+c}\)

Cộng vế với vế:

\(\Rightarrow\frac{1}{2}.VT+\frac{a}{b+2a}+\frac{b}{c+2b}+\frac{c}{a+2c}\ge2\)

\(\Leftrightarrow VT+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\ge4\)

\(\Leftrightarrow VT+\left(1-\frac{b}{b+2a}\right)+\left(1-\frac{c}{c+2b}\right)+\left(1-\frac{a}{a+2c}\right)\ge4\)

\(\Leftrightarrow VT\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Dấu "=" xảy ra khi \(a=b=c\)

Khánh Vũ Trọng
Xem chi tiết
Cố Tử Thần
24 tháng 5 2019 lúc 22:00

trả lời

dùng bất đẳng thức cosi đc ko

hok tốt

nguyen van bi
25 tháng 3 2020 lúc 15:00

undefined la gi

Khách vãng lai đã xóa
IS
28 tháng 3 2020 lúc 21:46

ta có

\(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\ge\frac{\left(a+b+c\right)^2}{3a+3b+3c}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow a=b=c=>\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1\)

tương tự 

\(\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\ge1\)

suy ra \(2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge2\)

=>\(1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\ge2\)

=> dpcm

Khách vãng lai đã xóa
Nguyễn Thu Trà
Xem chi tiết
Kiêm Hùng
9 tháng 5 2019 lúc 9:14

Cho \(a=b=c\)

\(\Rightarrow2\left(\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\right)\ge1+\frac{a}{a+2a}+\frac{a}{a+2a}+\frac{a}{a+2a}\)

\(\Leftrightarrow2\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)\ge1+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\)

\(\Leftrightarrow2\ge2\) ( Đúng)

\(\Rightarrow2\left(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\right)\ge1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)

Anh Pha
Xem chi tiết
Phan Trọng Đĩnh
26 tháng 5 2019 lúc 23:35

a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\)

Agami Raito
Xem chi tiết
Kawasaki
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Akai Haruma
30 tháng 5 2020 lúc 12:35

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 5 2020 lúc 21:54

\(a+b=1-c>\frac{1}{2}>c\)

Tương tự \(b+c>a;a+c>b\)

\(VT=\frac{1}{a\left(b+c-a\right)}+\frac{1}{b\left(a+c-b\right)}+\frac{1}{c\left(a+b-c\right)}\)

\(VT\ge\frac{4}{\left(a+b+c-a\right)^2}+\frac{4}{\left(b+a+c-b\right)^2}+\frac{4}{\left(c+a+b-c\right)^2}\)

\(VT\ge\frac{4}{\left(a+b\right)^2}+\frac{4}{\left(b+c\right)^2}+\frac{4}{\left(c+a\right)^2}\ge\frac{4}{3}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)^2\)

\(VT\ge\frac{4}{3}\left(\frac{9}{2\left(a+b+c\right)}\right)^2=\frac{4.81}{3.4}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)