Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Taehyungie
Xem chi tiết
Xuan Mai Do Thi
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 17:53

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

Xuan Mai Do Thi
22 tháng 3 2021 lúc 15:38

GIÚP MÌNH VỚI

 

 

hello sun
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 21:47

Tham khảo:

loading...

Anh Bảo
Xem chi tiết
Quốc Anh Nguyễn
Xem chi tiết
Đức Cao bảo
Xem chi tiết
Nguyễn Thành Long
Xem chi tiết
Vũ Hà My
Xem chi tiết
Nguyễn Anh Quân
10 tháng 2 2018 lúc 22:30

Vẽ hình đi bạn

Nguyễn Phương Ly
Xem chi tiết