Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Xuan Mai Do Thi

Cho đường tròn ( O; R ) và điểm A cố định ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AM, AN với đường tròn (M và N là các tiếp điểm). Một đường thẳng d đi qua A cắt (O;R) tại B và C (AB<AC). Gọi I là trung điểm BC

a, Chứng minh A, M, N, O, I cùng thuộc 1 đường tròn

b, Chứng minh AK.AI = AB.AC

 

ntkhai0708
22 tháng 3 2021 lúc 17:53

Xét $(O)$ có: $BC$ là dây cung
$I$ là trung điểm $BC$

$⇒OI ⊥BC$ (tính chất)

Xét $(O)$ có: $AM;AN$ là các tiếp tuyến của đường tròn

$⇒AM⊥OM;AN⊥ON;AM=AN$

Xét tứ giác $AMON$ có:

$\widehat{AMO}=\widehat{ANO}=90^o$

$⇒\widehat{AMO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AMON$ nội tiếp (tổng 2 góc đối $=180^o$)

$⇒$ 4 điểm $A;M;O;N$ thuộc 1 đường tròn(1)

Lại có: $\widehat{AIO}=\widehat{ANO}=90^o$

$⇒\widehat{AIO}+\widehat{ANO}=180^o$

$⇒$ Tứ giác $AION$ nội tiếp (Tổng 2 góc đối $=180^o$)

hay 4 điểm $A;I;O;N$ thuộc 1 đường tròn (2)

Từ $(1)(2)⇒$ 5 điểm $A;I;O;M;N$ thuộc 1 đường tròn (đpcm)

b, $K$ sẽ là giao điểm của $MN$ và $AC$

5 điểm $A;I;O;M;N$ thuộc 1 đường tròn

$⇒$ Tứ giác $AMIN$ nội tiếp

$⇒\widehat{AIM}=\widehat{ANM}$ (các góc nội tiếp cùng chắn cung $AM$)

Ta có: $AM=AN⇒\triangle AMN$ cân tại $A$

$⇒\widehat{AMN}=\widehat{ANM}$

$⇒\widehat{AIM}=\widehat{AMN}$

hay $\widehat{AIM}=\widehat{AMK}$

Xét $\triangle AIM$ và $\triangle AMK$ có:

$\widehat{AIM}=\widehat{AMK}$

$\widehat{A}$ chung

$⇒\triangle AIM \backsim \triangle AMK(c.g.c)$

$⇒\dfrac{AI}{AM}=\widehat{AM}{AK}$

$ ⇒AK.AI=AM^2(3)$

Xét $(O)$ có: $\widehat{AMB}=\widehat{ACM}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $MB$)

Xét $\triangle AMB$ và $\triangle ACM$ có:

$\widehat{AMB}=\widehat{ACM}$ 

$\widehat{A}$ chung

$⇒\triangle AMB \backsim \triangle ACM(g.g)$

$⇒\dfrac{AM}{AC}=\dfrac{AB}{AM}$

Hay $AB.AC=AM^2(4)$ 

Từ $(3)(4)⇒AK.AI=AB.AC(đpcm)$

undefined

Xuan Mai Do Thi
22 tháng 3 2021 lúc 15:38

GIÚP MÌNH VỚI

 

 


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
vũ ngọc hà vy
Xem chi tiết
vũ ngọc hà vy
Xem chi tiết
Kan Zandai Nalaza
Xem chi tiết
Vũ Hà My
Xem chi tiết
Ly Đặng Khánh
Xem chi tiết
fa mãi mãi
Xem chi tiết
Cầm Dương
Xem chi tiết