rút gọn biểu thức \(\frac{sina+sin3a}{2cos4a}\)
Biểu thức rút gọn của biểu thức \(A=\dfrac{\sin2a+\sin5a-\sin3a}{1+\cos a-2\sin^22a}\) là : ?
\(A=\dfrac{sin2\alpha+sin5\alpha-sin3\alpha}{1+cos\alpha-2sin^22\alpha}\)
\(=\dfrac{2sin\alpha.cos\alpha+2.cos4\alpha.sin\alpha}{cos4\alpha+cos\alpha}\)
\(=\dfrac{2sin\alpha.\left(cos\alpha+cos4\alpha\right)}{cos4\alpha+cos\alpha}=2sin\alpha\)
Cho \(a=\dfrac{\pi}{11}\). Tính giá trị của biểu thức: A=sina+sin2a+sin3a+sin4a+sin5a
Rút gọn biểu thức: a)\(\left(1+tanA+\frac{1}{cosA}\right)\left(1+tanA-\frac{1}{cosA}\right)\)
b) \(\sqrt{\frac{1+sinA}{1-sinA}+\sqrt{\frac{1-sinA}{1+sinA}}}\).
Rút gọn biểu thức: (sina + cosa)² - 2sina.cosa
`(sin \alpha+cos \alpha)^2-2sin \alpha.cos \alpha`
`=sin^2 \alpha + cos^2 \alpha+2sin \alpha.cos \alpha-2sin \alpha.cos \alpha`
`=1+0`
`=1`.
rút gọn:
a, A=\(\frac{sina+sin2a+sin3a}{cosa+cos2a+cos3a}\)
b, B=\(\frac{sin^2a+sin^2a.tan^2a}{cos^2a+cos^2a.cot^2a}\)
\(A=\frac{sina+sin3a+sin2a}{cosa+cos3a+cos2a}=\frac{2sin2a.cosa+sin2a}{2cos2a.cosa+cos2a}=\frac{sin2a\left(2cosa+1\right)}{cos2a\left(2cosa+1\right)}=\frac{sin2a}{cos2a}=tan2a\)
\(B=\frac{sin^2a\left(1+tan^2a\right)}{cos^2a\left(1+cot^2a\right)}=\frac{sin^2a.\frac{1}{cos^2a}}{cos^2a.\frac{1}{sin^2a}}=\frac{sin^4a}{cos^4a}=tan^4a\)
Rút gọn biểu thức
\(A=\frac{sin2a+sin5a-sin3a}{1+cosa-2sin^22a}\)
\(A=\frac{2sina.cosa+2cos4a.sina}{cos4a+cosa}=\frac{2sina\left(cos4a+cosa\right)}{cos4a+cosa}=2sina\)
Rút gọn: Sin3a+Sin3a Cos2a
Giúp mình vs. Cảm ơn
\(\sin^3a+\sin^3a\cdot\cos^3a\)
\(=\sin^3a\cdot\left(1+\cos^3a\right)\)
\(=\sin^3a\cdot\left(\cos a+1\right)\cdot\left(cos^2a-\cos a+1\right)\)
Rút gọn biểu thức :
C\(=\frac{\sqrt{2}-sina-cosa}{sina-cosa}\)
rút gọn biểu thức Q=2\(\left(\frac{\sin\alpha+\tan\alpha}{\cos\alpha+1}^{ }\right)^{^{ }2}\)\(+2\)
rút gọn biểu thức \(A=\frac{\sin2a+\sin5a-\sin3a}{1+\cos a-2\sin^22a}\)
\(Q=2\left(\frac{sina+\frac{sina}{cosa}}{cosa+1}\right)^2+2=2\left(\frac{sina.cosa+sina}{cosa\left(cosa+1\right)}\right)^2+2\)
\(=2\left(\frac{sina\left(cosa+1\right)}{cosa\left(cosa+1\right)}\right)^2+2=2tan^2a+2=2\left(1+tan^2a\right)=\frac{2}{cos^2a}\)
\(A=\frac{sin2a+2cos4a.sina}{cos4a+cosa}=\frac{2sina.cosa+2cos4a.sina}{cos4a+cosa}=\frac{2sina\left(cos4a+cosa\right)}{cos4a+cosa}=2sina\)