Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
27 tháng 9 2023 lúc 0:05

a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = 2,c =  - 20\)

Ta có \({a^2} + {b^2} - c = 1 + 4 + 20 = 25 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1;2)\) và có bán kính \(R = \sqrt {25}  = 5\)

b) Phương trình \({\left( {x + 5} \right)^2} + {\left( {y + 1} \right)^2} = 121\) là phương trình dường tròn với tâm \(I( - 5; - 1)\) và bán kinh \(R = \sqrt {121}  = 11\)

c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a =  - 3,b =  - 2,c =  - 2\)

Ta có \({a^2} + {b^2} - c = 9 + 4 + 2 = 15 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I( - 3; - 2)\) và có bán kính \(R = \sqrt {15} \)

d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn

Kim Khánh Linh
Xem chi tiết
Hoàng Như Quỳnh
18 tháng 5 2021 lúc 18:27

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

Khách vãng lai đã xóa
Nguyễn Huy Tú
18 tháng 5 2021 lúc 19:23

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

Khách vãng lai đã xóa
Hoàng Như Quỳnh
12 tháng 7 2021 lúc 8:50

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\hept{\begin{cases}6x+3y=57\\6x-4y=22\end{cases}\hept{\begin{cases}7y=35\\3x-2y=11\end{cases}}}}\)

\(\hept{\begin{cases}y=5\\3x-2.5=11\end{cases}\hept{\begin{cases}y=5\\3x=21\end{cases}\hept{\begin{cases}y=5\\x=7\end{cases}}}}\)

\(a=1,b=20;c=-21\)

\(\Delta=\left(20\right)^2-\left(4.1.-21\right)=484\)

\(\sqrt{\Delta}=\sqrt{484}=22\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-20+22}{2}=1\left(TM\right)\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=-21\left(TM\right)\)

\(3,x^4-20x^2+64=0\)

đặt \(x^2=a\)ta có pt

\(a^2-20a+64=0\)

\(a=1;b=-20;c=64\)

\(\Delta=\left(-20\right)^2-\left(4.1.64\right)=144\)

\(\sqrt{\Delta}=12\)

\(a_1=\frac{-b+\sqrt{\Delta}}{2a}=16\left(TM\right)\)

\(a_2=\frac{-b-\sqrt{\Delta}}{2a}=4\left(TM\right)\)

\(< =>x_1=\sqrt{16}=4\left(TM\right)\)

\(x_2=\sqrt{4}=2\left(TM\right)\)

vậy bộ n0 của pt là (\(4;2\))

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 7 2018 lúc 7:57

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2018 lúc 4:46

Châu Anh Vũ
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 7:16

\(ĐK:x\ge5\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{x-5}=b\end{matrix}\right.\left(a,b\ge0\right)\Leftrightarrow4b^2-3a^2=x-20\)

\(PT\Leftrightarrow4b^2-3a^2+a+b+ab=0\\ \Leftrightarrow4ab+4b^2-3a^2-3ab+a+b=0\\ \Leftrightarrow4b\left(a+b\right)-3a\left(a+b\right)+\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(4b-3a+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b=0\left(\text{loại do }a+b>0\right)\\4b-3a+1=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow4\sqrt{x-5}=3\sqrt{x}-1\\ \Leftrightarrow16x-80=9x-6\sqrt{x}+1\\ \Leftrightarrow7x+6\sqrt{x}-81=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-\dfrac{27}{7}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=9\left(nhận\right)\)

Hường
Xem chi tiết
Trần Tuấn Hoàng
8 tháng 4 2023 lúc 16:43

\(\sqrt{x-2}+1=2x-\dfrac{20}{x+2}\left(1\right)\)

Đk: \(x\ge2\)

\(\left(1\right)\Leftrightarrow\sqrt{x-2}-1=2x-\dfrac{20}{x+2}-2\)

\(\Leftrightarrow\dfrac{\left(x-2\right)-1}{\sqrt{x-2}+1}=\dfrac{2x\left(x+2\right)-2\left(x+2\right)-20}{x+2}\)

\(\Leftrightarrow\dfrac{\left(x-2\right)-1}{\sqrt{x-2}+1}=\dfrac{2x^2+2x-24}{x+2}\)

\(\Leftrightarrow\dfrac{x-3}{\sqrt{x-2}+1}=\dfrac{2\left(x-3\right)\left(x+4\right)}{x+2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{x-2}+1}=2.\dfrac{x+4}{x+2}\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow2\left(x+4\right)\sqrt{x-2}+2\left(x+4\right)=x+2\)

\(\Leftrightarrow2\left(x+4\right)\sqrt{x-2}+x+6=0\left(3\right)\)

Ta có \(x\ge2>0\Rightarrow2\left(x+4\right)\sqrt{x-2}+x+6>0\)

Vì vậy phương trình (3) vô nghiệm. Khi đó phương trình (2) cũng vô nghiệm.

Vậy phương trình (1) có nghiệm duy nhất là \(x=3\)

 

 

:vvv
Xem chi tiết
game thủ liên quân
Xem chi tiết
Thanh Hoàng Thanh
10 tháng 5 2022 lúc 20:43

undefinedundefined

린 린
Xem chi tiết
린 린
20 tháng 12 2018 lúc 21:31

ai nhanh s nhé

cô nàng lạnh lùng
20 tháng 12 2018 lúc 21:35

mk tìm được 4 từ này thôi ko biết đúng hay ko:

rạng rỡ,sặc sỡ,tuyệt đẹp,tuyệt vời