chứng minh rằng không tồn tại cặp giá trị nguyên (x;y) thỏa mãn :\(x^2-2-2y^2=2011\)
chứng minh không tồn tại cặp giá trị nguyên x,y thỏa mãn : \(x^2-2-2y^2=2011\)
chứng minh rằng không tồn tại cặp số nguyên x,y thoả mãn x^2-2018=y^2
Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)
\(\Rightarrow x^2-y^2=2018\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)
Dễ c/m: x và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)
Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)
Mà 2018 không chia hết cho 4 nên điều g/s là sai
Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)
Ta có : x2 - 2018 = y2
=> x2 - y2 = 2018
=> (x + y)(x - y) = 2018
Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)
Lập bảng xét 8 trường hợp ta có :
x - y | 1 | 2018 | 2 | 1009 | -1 | -2018 | -1009 | -2 |
x + y | 2018 | 1 | 1009 | 2 | -2018 | -1 | -2 | -1009 |
x | 2019/2 | 2009/2 | 1011/2 | 1011/2 | -2019/2 | -2019/2 | -1011/2 | -1011/2 |
y | 2017/2 | -2007/2 | 1007/2 | -1007/2 | -2017/2 | 2017/2 | -1007/2 | 1007/2 |
=> Không tồn tại cặp số nguyên x,y thỏa mãn
Mình có 1 cách làm khác ngắn hơn nè, chỉ mất 3 dòng thôi
Do 1 số chính phương chia 4 dư 0 hoặc 1 (tính chất)
Nếu x^2 chia 4 dư 0 (x chẵn). Mà 2018 chia 4 dư 2
=> x^2-2018 chia 4 dư 2 => y^2 chia 4 dư 2=> Vô lí=> Loại
Nếu x^2 chia 4 dư 1 (x lẻ). Mà 2018 chia 4 dư 2
=> x^2-2018 chia 4 dư 3 => y^2 chia 4 dư 3=> Vô lí=> Loại
Thế nên không tồn tại x,y nguyên => đpcm
Chứng minh rằng không tồn tại cặp số (x;y) nguyên nào thỏa mãn : 3x^2+7y^2=2002
Chứng minh rằng không tồn tại cặp số (x;y) nguyên nào thỏa mãn
3x^2+7y^2=2002
C1 ta có 3x^2 + 7y^2 = 2002
<=> 3x^2=2002-7y^2
<=> 3x^2=7(286-y^2)
mặt khác (3;7)=1(nguyên tố cùng nhau) => x chia hết cho 7 <=> x^2 chia hết cho 7
từ đó suy ra (286-y^2) chia hết cho 7
<=> [287-(y^2+1) ] chia hết cho 7
<=> y^2+1 chia hết cho 7
giã sử y=7k +r (với 0<=r<=6
=>y^2+1=(7k+r)^2+1=7(7k^2+2kr)+r^2 +1
thử lại ta thấy với r =0;1;2;3;4;5;6 thì r^2 +1 o chia hết cho 7 => y^2+1 o chia hết cho 7
=>đpcm
cách 2
giữ 3x^3+7y^2=2002 (1)
có nghiệm nguyên x,y
từ (1) => x^2 chia hết cho 7 => x chia hết cho 7 => x => x^2=49
=> x^2 có dạng 49t^2 (t thuộc Z)
thay x^2=49t^2 vào (1)
và nhận thấy y^2>=1
=> 147t^2 <=1995
=> t^2<=13
-> t^2 = 1,4,9
với t^2=1 ...=> x^2 =49 => y^2 =279,y#z
t^2 =4 =>x^2=196 => y^2=258 (y#Z)
t^=9 => x^2 =441 -> y^2 =223)(y#Z)
đpcm
Chứng minh: Không tồn tại giá trị x để \(P=\dfrac{3\sqrt{x}+5}{\sqrt{x}+2}\) là số nguyên
\(P=\dfrac{3\sqrt{x}+6-1}{\sqrt{x}+2}=3-\dfrac{1}{\sqrt{x}+2}< 3\)
\(P=\dfrac{6\sqrt{x}+10}{2\left(\sqrt{x}+2\right)}=\dfrac{5\left(\sqrt{x}+2\right)+\sqrt{x}}{2\left(\sqrt{x}+2\right)}=\dfrac{5}{2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\ge\dfrac{5}{2}\)
\(\Rightarrow\dfrac{5}{2}\le P< 3\) ; \(\forall x\in\) TXĐ nên không tồn tại x để P nguyên (giữa 5/2 và 3 không có số nguyên nào)
Chứng minh không tồn tại cặp số nguyên ( x;y) thỏa mãn | 3x - 4y | + | 5x-6y | = 7
\(\text{Ta có:}\)
\(|a|\text{ cùng tính chẵn lẻ với a khi a là số nguyên}\)
\(\text{Mà: 3x-4y; 5x-6y đều là số nguyên nên:}|3x-4y|+|5x-6y|\text{ cùng tính chẵn lẻ với:}\)
\(\text{3x-4y+5x-6y=8x-10y chia hết cho 2 nên là số chẵn mà 7 là số lẻ nên vô lí ta có điều phải chứng minh}\)
chứng minh không tồn tại cặp số nguyên ( x;y) nào thỏa mãn |9x-8y| + | 7x-6y|=5
tự làm là hạnh phúc của mỗi công dân.
Chứng minh: Trong 5 số nguyên dương, không tồn tại tổng ba số bất kỳ có giá trị là một số nguyên tố.
Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3
Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3
=>LOại
Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư
=>Suy ra tồn tại 3 số có cùng số dư
=>Ba số này có tổng chia hết cho 3
=>ĐPCM
cho hai đa thức : P(x)=5x^3+6x^2-9x+4 . Q(x)=-5x^3-4x^2+9x+5 . chứng minh rằng : không tồn tại giá trị nào của x để hai đa thức P(x) và Q(x) có cùng giá trị không dương