Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Yim Yim
Xem chi tiết
BiBo MoMo
Xem chi tiết
Kiệt Nguyễn
12 tháng 11 2019 lúc 18:15

Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)

\(\Rightarrow x^2-y^2=2018\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)

Dễ c/m: x  và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)

Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)

Mà 2018 không chia hết cho 4 nên điều g/s là sai

Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)

Khách vãng lai đã xóa
Xyz OLM
12 tháng 11 2019 lúc 18:25

Ta có : x2 - 2018 = y2

=> x2 - y2 = 2018

=> (x + y)(x - y) = 2018 

Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)

Lập bảng xét 8 trường hợp ta có : 

x - y1201821009-1-2018-1009-2
x + y2018110092-2018-1-2-1009
x2019/22009/21011/21011/2-2019/2-2019/2-1011/2-1011/2
y2017/2-2007/21007/2-1007/2-2017/22017/2-1007/21007/2

=> Không tồn tại cặp số nguyên x,y thỏa mãn

Khách vãng lai đã xóa
lili
12 tháng 11 2019 lúc 18:28

Mình có 1 cách làm khác ngắn hơn nè, chỉ mất 3 dòng thôi

Do 1 số chính phương chia 4 dư 0 hoặc 1 (tính chất)

Nếu x^2 chia 4 dư 0 (x chẵn). Mà 2018 chia 4 dư 2

=> x^2-2018 chia 4 dư 2 => y^2 chia 4 dư 2=> Vô lí=> Loại

Nếu x^2 chia 4 dư 1 (x lẻ). Mà 2018 chia 4 dư 2

=> x^2-2018 chia 4 dư 3 => y^2 chia 4 dư 3=> Vô lí=> Loại

Thế nên không tồn tại x,y nguyên => đpcm

Khách vãng lai đã xóa
vu minh hang
Xem chi tiết
vu minh hang
Xem chi tiết
Thắng Nguyễn
8 tháng 5 2016 lúc 22:57

C1 ta có 3x^2 + 7y^2 = 2002 

<=> 3x^2=2002-7y^2 

<=> 3x^2=7(286-y^2) 

mặt khác (3;7)=1(nguyên tố cùng nhau) => x chia hết cho 7 <=> x^2 chia hết cho 7 

từ đó suy ra (286-y^2) chia hết cho 7 

<=> [287-(y^2+1) ] chia hết cho 7 

<=> y^2+1 chia hết cho 7 

giã sử y=7k +r (với 0<=r<=6 

=>y^2+1=(7k+r)^2+1=7(7k^2+2kr)+r^2 +1 

thử lại ta thấy với r =0;1;2;3;4;5;6 thì r^2 +1 o chia hết cho 7 => y^2+1 o chia hết cho 7 

=>đpcm
 

Thắng Nguyễn
8 tháng 5 2016 lúc 22:57

cách 2 
giữ 3x^3+7y^2=2002 (1) 

có nghiệm nguyên x,y 

từ (1) => x^2 chia hết cho 7 => x chia hết cho 7 => x => x^2=49 

=> x^2 có dạng 49t^2 (t thuộc Z) 

thay x^2=49t^2 vào (1) 

và nhận thấy y^2>=1 

=> 147t^2 <=1995 

=> t^2<=13 

-> t^2 = 1,4,9 

với t^2=1 ...=> x^2 =49 => y^2 =279,y#z 

t^2 =4 =>x^2=196 => y^2=258 (y#Z) 

t^=9 => x^2 =441 -> y^2 =223)(y#Z) 

đpcm

Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 14:33

\(P=\dfrac{3\sqrt{x}+6-1}{\sqrt{x}+2}=3-\dfrac{1}{\sqrt{x}+2}< 3\)

\(P=\dfrac{6\sqrt{x}+10}{2\left(\sqrt{x}+2\right)}=\dfrac{5\left(\sqrt{x}+2\right)+\sqrt{x}}{2\left(\sqrt{x}+2\right)}=\dfrac{5}{2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\ge\dfrac{5}{2}\)

\(\Rightarrow\dfrac{5}{2}\le P< 3\) ; \(\forall x\in\) TXĐ nên không tồn tại x để P nguyên (giữa 5/2 và 3 không có số nguyên nào)

Phan Trí Bằng
18 tháng 8 2021 lúc 14:34

undefined

Nguyễn Ngọc Minh Anh
Xem chi tiết
shitbo
10 tháng 2 2020 lúc 14:07

\(\text{Ta có:}\)

\(|a|\text{ cùng tính chẵn lẻ với a khi a là số nguyên}\)

\(\text{Mà: 3x-4y; 5x-6y đều là số nguyên nên:}|3x-4y|+|5x-6y|\text{ cùng tính chẵn lẻ với:}\)

\(\text{3x-4y+5x-6y=8x-10y chia hết cho 2 nên là số chẵn mà 7 là số lẻ nên vô lí ta có điều phải chứng minh}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Minh Anh
Xem chi tiết
Phạm Thị Mai Anh
1 tháng 6 2020 lúc 10:41

tự làm là hạnh phúc của mỗi công dân.

Khách vãng lai đã xóa
Nguyễn Văn A
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 3 2023 lúc 17:40

Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3

Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3

=>LOại

Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư

=>Suy ra tồn tại 3 số có cùng số dư

=>Ba số này có tổng chia hết cho 3

=>ĐPCM

Huong Nguyen
Xem chi tiết