Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thiện Minh
Xem chi tiết
Hoàng Thị Vân Anh
Xem chi tiết
Selina Moon
27 tháng 2 2016 lúc 21:41

Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).

Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.

Lê Minh Đức
27 tháng 2 2016 lúc 22:15

Vì 2n luôn là số chẵn nên nếu n là số lẻ thì trong hai số a + n và a + 2n sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy n phải là số chẵn (tức là n chia hết cho 2).

Lý luận tương tự, n phải chia hết cho 3, vì nếu n chia 3 dư 1 hoặc 2 thì 2n chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +n, a +2n khi chia cho 3 chắc chắn có 1 số chia hết cho 3

(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

nếu a chia 3 dư 1 thì a + n hoặc a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + n và a + 2n phải có 1 số chia hết cho 3 vì trong 2 số n và 2n có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 => n chia hết cho 6.

Bá Đạo 102
Xem chi tiết
Ác Mộng
12 tháng 6 2015 lúc 22:04

a)2x+y=7(2x+y)=14x+7y

Do 2x+9 chia hết cho 9 =>14x+7y chia hết cho 9

9x chia hết cho 9 =>14x+7y-9x=5x+7y chia hết cho 9

b)p và p+2 là số nguyên tố lớn hơn 3 nên p+p+2=2p+2 chia hết cho 2

p là số nguyên tố lớn hơn 3 nên

*)P=3k(loại vì 3k là hợp số  có ước là 3 và k)

*)p=3k+1(loại vì số nguyên tố lớn hơn 3 là số lẻ =>3k+1 là số chẵn)

*)p=3k+2(TM)

=>2p+2=6k+4+2=6k+6 chia hết cho 3

2p+2 chia hết cho 2 và 3=>2p+2 chia hết cho 6

=>(2p+2).1/2=p+1 chia hết cho 6

RONADO VIET NAM
22 tháng 2 2018 lúc 16:57

^.^

^-^

^_^

trương đăng bảo
Xem chi tiết
trương đăng bảo
7 tháng 2 2021 lúc 20:13

ko phải violympic toán đâu mà chỉ HSG thôi

Trung Nguyen
Xem chi tiết
Trần Đức Kiên
Xem chi tiết
Đỗ Thị Yến
Xem chi tiết
Đỗ Thanh Hải
4 tháng 3 2021 lúc 17:35

Ta có a là số nguyên tố lớn hơn 3 => a là số lẻ

=> a-1 chia hết cho 2 => (a-1)(a+4) chia hết cho 2 (1)

Lại có a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3

Nếu a chia 3 dư 1 => a-1 chia hết cho 3 => (a-1)(a+4) chia hết cho 3

Nếu a chia 3 dư 2 => a + 4 chia hết cho 3 => (a-1)(a+4) chia hết cho 3

=> (a-1)(a+4) chia hết cho 3 (1)

Từ (1) và (2) do 2 và 3 là 2 số nguyên tố cùng nhau => (a-1)(a+4) chia hết cho 6

hnamyuh
4 tháng 3 2021 lúc 17:37

a là số nguyên tố lớn hơn 3 nên a là số lẻ

Do đó, a - 1 là số chẵn ⇒ (a - 1)⋮2 (1)

- Nếu :

a chia 3 dư 1 suy ra: (a-1) chia hết cho 3

a chia 3 dư 2 suy ra: (a+4) chia hết cho 3

Suy ra: (a-1)(a+4) chia hết cho 3(2)

Từ (1)(2) suy ra điều phải chứng minh.

 

gãi hộ cái đít
4 tháng 3 2021 lúc 17:39

Số nguyên tố lớn hơn 3 là số lẻ nên a  có dạng a=3n+1 hoặc a=3n+2 ( \(n\in N\))

- Nếu a=3n+1 \(\Rightarrow\left(a-1\right)\left(a+4\right)=\left(3n\right)\left(3n+5\right)⋮3\)

- Nếu a=3n+2 \(\Rightarrow\left(a-1\right)\left(a+4\right)=\left(3n+1\right)\left(3n+6\right)⋮3\)

\(\Rightarrow\left(a-1\right)\left(a+4\right)⋮3\) với mọi số nguyên tố lớn hơn 3

Số nguyên tố > 3 là số lẻ nên có dạng 2k+1

=> a-1 chia hết cho 2

Mà (2;3)=1 => (a-1)(a+4) chia hết có 6 (2.3=6)(đpcm)

 

Nguyễn Anh Kim Hân
Xem chi tiết
Cô Hoàng Huyền
28 tháng 10 2016 lúc 9:10

Vì a; a + k; a + 2k là ba số nguyên tố lớn hơn 3 nên chúng là số lẻ. Vậy thì a + a + k = 2a + k là số chẵn. Từ đó suy ra k chia hết cho 2.

 Do a nguyên tố lớn hơn 3 nên a = 3m  + 1 hoặc a = 3m  + 2 (m nguyên).

Với a = 3m + 1:

+ Nếu k = 3p + 2 thì a + k = 3m + 1 + 3p + 2 chia hết 3 (Vô lý vì a + k nguyên tố lớn hơn 3).

+ Nếu k = 3p + 1 thì a + 2k = 3m + 1 + 6p + 2 chia hết 3 (Vô lý vì a + 2k nguyên tố lớn hơn 3).

Vậy k = 3p hay k chia hết cho 3.

Với a = 3m + 2:

+ Nếu k = 3p + 2 thì a + 2k = 3m + 2 + 6p + 6 chia hết 3 (Vô lý vì a + 2k nguyên tố lớn hơn 3).

+ Nếu k = 3p + 1 thì a + k = 3m + 2 + 3p + 1 chia hết 3 (Vô lý vì a + k nguyên tố lớn hơn 3).

Vậy k = 3p hay k chia hết cho 3.

Tóm lại k chia hết 2 và k chia hết 3, mà (2; 3) = 1 nên k chia hết cho 6.

beastvn
Xem chi tiết
nguyen duc thang
4 tháng 1 2018 lúc 15:46

Bài 1 :

 Gọi đó là p, q, r > 3 => p, q, r không chia hết cho 3. 
=> theo nguyên lý Dirichlet trong 3 số p, q, r phải có ít nhất 2 số chia cho 3 cho cùng số dư. 
Do 2d = 2(q - p) = 2(r - q) = r - p nên 2d chia hết cho 3 => d chia hết cho 3. 
d = q - p cũng chia hết cho 2 do p, q đều lẻ 
Vậy d chia hết cho 2*3 = 6