Ta có a là số nguyên tố lớn hơn 3 => a là số lẻ
=> a-1 chia hết cho 2 => (a-1)(a+4) chia hết cho 2 (1)
Lại có a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3
Nếu a chia 3 dư 1 => a-1 chia hết cho 3 => (a-1)(a+4) chia hết cho 3
Nếu a chia 3 dư 2 => a + 4 chia hết cho 3 => (a-1)(a+4) chia hết cho 3
=> (a-1)(a+4) chia hết cho 3 (1)
Từ (1) và (2) do 2 và 3 là 2 số nguyên tố cùng nhau => (a-1)(a+4) chia hết cho 6
a là số nguyên tố lớn hơn 3 nên a là số lẻ
Do đó, a - 1 là số chẵn ⇒ (a - 1)⋮2 (1)
- Nếu :
a chia 3 dư 1 suy ra: (a-1) chia hết cho 3
a chia 3 dư 2 suy ra: (a+4) chia hết cho 3
Suy ra: (a-1)(a+4) chia hết cho 3(2)
Từ (1)(2) suy ra điều phải chứng minh.
Số nguyên tố lớn hơn 3 là số lẻ nên a có dạng a=3n+1 hoặc a=3n+2 ( \(n\in N\))
- Nếu a=3n+1 \(\Rightarrow\left(a-1\right)\left(a+4\right)=\left(3n\right)\left(3n+5\right)⋮3\)
- Nếu a=3n+2 \(\Rightarrow\left(a-1\right)\left(a+4\right)=\left(3n+1\right)\left(3n+6\right)⋮3\)
\(\Rightarrow\left(a-1\right)\left(a+4\right)⋮3\) với mọi số nguyên tố lớn hơn 3
Số nguyên tố > 3 là số lẻ nên có dạng 2k+1
=> a-1 chia hết cho 2
Mà (2;3)=1 => (a-1)(a+4) chia hết có 6 (2.3=6)(đpcm)