Cho phương trình : (m-1)x2 + 2x - 3 = 0
( với m hằng số )
a) Tìm m để phương trình có 2 nghiệm phân biệt
b) Tìm m để phương trình có nghiệm kép
c) Tìm m để phương trình vô nghiệm
Cho phương trình \(x^2-2x+m=0\)
a) tìm m để phương trình có nghiệm là 3? Tìm nghiệm còn lại
b) Tìm m để phương trình có nghiệm kép?
c) Tìm m để phương trình có 2 nghiệm phân biệt?
cho phương trình x2 -(m+1)x +m+2=0
a) tìm m để phương trình vô nghiệm ? có nghiệm kép? có nghiệm? có 2 nghiệm phân biệt?
b) tìm m để phương trình có 2 nghiệm trái dấu
c) tìm m để phương trình có 2 nghiệm dương phân biệt
d) tìm m để phương trình có ít nhất một nghiệm dương
cho phương trình mx^2 + 12 x − 4 = 0
a,giải phương trình với m=1
b,tìm m để phương trình có 2 nghiệm phân biệt
c,tìm m để phương trình có 2 nghiệm kép tìm nghiệm kép đó
d,tìm m để phương trình vô nghiệm
a) Thay \(m=1\) vào phương trình, ta được:
\(x^2+12x-4=0\) \(\Rightarrow\left[{}\begin{matrix}x=-6+2\sqrt{10}\\x=-6-2\sqrt{10}\end{matrix}\right.\)
Vậy ...
b)
+) Với \(m=0\) \(\Rightarrow12x-4=0\) \(\Leftrightarrow x=\dfrac{1}{3}\)
+) Với \(m\ne0\), ta có: \(\Delta'=36+4m\)
Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow m>-9\)
Vậy \(\left\{{}\begin{matrix}m\ne0\\m>-9\end{matrix}\right.\) thì phương trình có 2 nghiệm phân biệt
c) Để phương trình có nghiệm kép \(\Leftrightarrow\Delta'=0\) \(\Leftrightarrow m=-9\)
\(\Rightarrow-9x^2+12x-4=0\) \(\Leftrightarrow x=\dfrac{2}{3}\)
Vậy \(m=-9\) thì phương trình có nghiệm kép \(x_1=x_2=\dfrac{2}{3}\)
d) Để phương trình vô nghiệm \(\Leftrightarrow\Delta'< 0\) \(\Leftrightarrow m< -9\)
Vậy \(m< -9\) thì phương trình vô nghiệm
Cho phương trình (m-3)x^2+2x-5=0 (1) ( m là tham số) a. Tìm m để phương trình (1) có nghiệm kép, tìn nghiệm kép đó. b. Tìm m để phương trình (1) có w nghiệm phân biệt, tìm các nghiệm đó theo m. Giúp mình gấp vs ạ
a: TH1: m=3
=>2x-5=0
=>x=5/2(nhận)
TH2: m<>3
Δ=2^2-4*(m-3)*(-5)
=4+20(m-3)
=4+20m-60=20m-56
Để phương trình có nghiệm kép thì 20m-56=0
=>m=2,8
=>-0,2x^2+2x-5=0
=>x^2-10x+25=0
=>x=5
b: Để phươg trình có hai nghiệm pb thì 20m-56>0
=>m>2,8
Cho phương trình x2 - (m-1)x-2m-1=0 (1) (m là tham số)
a. Tìm m để phương trình (1) vô nghiệm, có nghiệm, có hai nghiệm phân biệt.
b. Tìm m để phương trình (1) có hai nghiệm phân biệt cùng dương.
c. Tìm m để phương trình (1) có hai nghiệm phân biệt x1 x2 thỏa mãn x12 +x22 =3
a:
\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)
\(=m^2-2m+1+8m+4=m^2+6m+5\)
Để (1) vô nghiệm thì (m+1)(m+5)<0
hay -5<m<-1
Để (1) có nghiệm thì (m+1)(m+5)>=0
=>m>=-1 hoặc m<=-5
Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0
=>m>-1 hoặc m<-5
b: Để (1) có hai nghiệm phân biệt cùng dương thì
\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)
\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)
\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)
Cho phương trình bậc hai : x2 + 2m + m +6 = 0 (6).
a/ Tìm m để phương trình (6) có nghiệm x = -1. ? Tính nghiệm còn lại.
b/ Tìm m để phương trình (6) có nghiệm kép? Tính nghiệm kép đó.
c/ Gọi x1, x2 là 2 nghiệm của phương trình (6). Tìm m để A = x1 +x2 -x1.x2 đạt giá trị lớn nhất
a: Thay x=-1 vào (6), ta được:
1+2m+m+6=0
=>3m+7=0
=>m=-7/3
x1+x2=-2m/1=-2*7/3=-14/3
=>x2=-14/3-x1=-14/3+1=-11/3
b: \(\text{Δ}=0^2-2\left(2m+m+6\right)=-2\left(3m+6\right)\)
Để phương trình có nghiệm kép thì 3m+6=0
=>m=-2
Khi m=-2 thì (6) sẽ là x^2+2*(-2)-2+6=0
=>x^2-4x+4=0
=>x=2
Cho phương trình m(x-4)-2x=4(1-m) (với m là tham số)
a) Giải phương trình với m=0, m=-1, m=-3
b)Tìm m để phương trình vô nghiệm
c)Tìm m để phương trình có vô số nghiệm
d)Tìm m để phương trình có nghiệm dương duy nhất
e)Tìm m để phương trình có nghiệm duy nhât nhỏ hơn 1
Cho phương trình : x^2 + x-3m+2=0
a, Gỉai phương trình khi m=1 .
b, Tìm m để phương trình có nghiệm x=2.
c, Tìm m để phương trình có 2 nghiệm phân biệt .
d, Tìm m để phương trình có nghiệm kép.
e, Tìm m để phương trình vô nghiệm
a, Với m=1 thay vào pt
Ta có
\(x^2+x-1=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)
b,
Thay x=2 vào pt
ta có
\(4-2-3m+2=0\)
\(\Leftrightarrow4-3m=0\)
\(\Rightarrow m=\dfrac{4}{3}\)
c, Ta có
\(\Delta=1-4\left(-3m+2\right)\)
\(=12m-7\)
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow12m-7>0\)
\(\Rightarrow m>\dfrac{7}{12}\)
d,
Để ptcos nghiệm kép thì \(\Delta=0\)
\(\Rightarrow12m-7=0\)
\(\Rightarrow m=\dfrac{7}{12}\)
e,
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Rightarrow m< \dfrac{7}{12}\)
cho phương trình :x2+2(m-1)x+4m2-2=0. TÌM m để
a, phương trình có 2 nghiệm phân biệt
b, phương trình có nghiệm kép
c, phương trình vô nghiệm
Cho phương trình: \(\left(m-4\right)x^2-2mx+m-2=0\)
a, Tìm m để phương trình có nghiệm \(x=\sqrt{3}\)
b, Tìm m để phương trình có 2 nghiệm phân biệt, có nghiệm kép, vô nghiệm.