Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đàm Tùng Vận
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 10:46

\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Frienke De Jong
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 16:12

\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)

\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)

\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)

\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)

\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)

\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)

Đàm Tùng Vận
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 11:35

Biểu thức này không có min và cũng không có max

Linh Bùi Thị Thùy
Xem chi tiết
_Guiltykamikk_
16 tháng 3 2018 lúc 13:05

a) Đặt \(A=10+2x-5x^2\)

\(-A=5x^2-2x-10\)

\(-5A=25x^2-10x-50\)

\(-5A=\left(25x^2-10x+1\right)-51\)

\(-5A=\left(5x-1\right)^2-51\)

Do \(\left(5x-1\right)^2\ge0\forall x\)

\(\Rightarrow-5A\ge-51\)

\(A\le\frac{51}{5}\)

Dấu "=" xảy ra khi : \(5x-1=0\Leftrightarrow x=\frac{1}{5}\)

Vậy Max A = \(\frac{51}{5}\Leftrightarrow x=\frac{1}{5}\)

b) Đặt \(B=x^2-6x+10\)

\(B=\left(x^2-6x+9\right)+1\)

\(B=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\forall x\)

\(B\ge1\)

Dấu "=" xảy ra khi :

\(x-3=0\Leftrightarrow x=3\)

Vậy Min B \(=1\Leftrightarrow x=3\)

Nguyễn Anh Thư
Xem chi tiết
Khanh Nguyễn Ngọc
10 tháng 9 2020 lúc 8:32

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

Khách vãng lai đã xóa
123 nhan
Xem chi tiết
HT.Phong (9A5)
9 tháng 8 2023 lúc 8:49

Ta có: 

\(C=\sqrt{-x^2+6x}\) 

Mà: \(\sqrt{-x^2+6x}\ge0\) 

Dấu "=" xảy ra khi:

\(\sqrt{-x^2+6x}=0\)

\(\Leftrightarrow\sqrt{-x\left(x-6\right)}=0\)

\(\Leftrightarrow-x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(C_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

HT.Phong (9A5)
9 tháng 8 2023 lúc 9:00

\(D=\sqrt{6x-2x^2}\)

Mà: \(\sqrt{6x-2x^2}\ge0\)

Dấu "=" xảy ra khi:

\(\sqrt{6x-2x^2}=0\)

\(\Leftrightarrow\sqrt{2x\left(3-x\right)}=0\)

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy: \(D_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Gấuu
9 tháng 8 2023 lúc 9:05

\(C=\sqrt{-x^2+6x}=\sqrt{9-\left(x^2-6x+9\right)}=\sqrt{9-\left(x-3\right)^2}\le\sqrt{9}=3\)

Dấu "=" xảy ra khi \(x=3\)

Vậy \(maxC=3\)

\(D=\sqrt{6x-2x^2}=\dfrac{1}{\sqrt{2}}\sqrt{12x-4x^2}=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(4x^2-12x+9\right)}\)

\(=\dfrac{1}{\sqrt{2}}\sqrt{9-\left(2x-3\right)^2}\le\dfrac{1}{\sqrt{2}}.\sqrt{9}\)\(=\dfrac{3\sqrt{2}}{2}\)

Dấu "=" xảy ra khi \(x=\dfrac{3}{2}\)

Vậy \(maxD=\dfrac{3\sqrt{2}}{2}\)

Trần Thảo Vân
Xem chi tiết

\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)

Để A đạt GTLN thì x2+3x+3 bé nhất

mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)

Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)

lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)

Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)

Trần Vân
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 21:22

\(A=\frac{3\left(2x^2+6x+10\right)}{3\left(x^2+3x+3\right)}=\frac{6x^2+18x+30}{3\left(x^2+3x+3\right)}=\frac{22\left(x^2+3x+3\right)-16x^2-48x-36}{3\left(x^2+3x+3\right)}\)

\(A=\frac{22}{3}-\frac{16x^2+48x+36}{3\left(x^2+3x+3\right)}=\frac{22}{3}-\frac{\left(4x+6\right)^2}{3\left(x^2+3x+3\right)}\)

Do \(\left\{{}\begin{matrix}\left(4x+6\right)^2\ge0\\x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\frac{\left(4x+6\right)^2}{3\left(x^2+3x+3\right)}\ge0\)

\(\Rightarrow A\le\frac{22}{3}\Rightarrow A_{max}=\frac{22}{3}\) khi \(4x+6=0\Rightarrow x=-\frac{3}{2}\)

Mochi Happy
Xem chi tiết
bui thi lan phuong
22 tháng 7 2017 lúc 19:23

a)=x2=x1==1

x1=x4+x10

x14

b)4x-x+3

x3+3

x6

k nah bn

Hồ Thị Sao
24 tháng 7 2017 lúc 8:51

=x^2-2x3+3^2+10
=(x+3)^2+10 lớn hơn hoặc bằng 10
Dấu = xảy ra khi x+3=0=>x=-3
Vậy ...cái đó bạn tự làm tiếp nha ^^