Tìm a biết int_{-a}^{a} (3x^2+1)/(3^x+1) dx = 130
Câu 1: Biết \(\int_{1}^{2}f(x) dx=4;\int_{2}^{6}f(x) dx=12,tính \int_{1}^{6}f(x) dx=?\)
Câu 2:Biết
\(\int_{3}^{9}f(x) dx=12.Tính \int_{1}^{3}f(x) dx\)
Câu 1: điều kiện là hàm f(x) liên tục và khả vi trên [1;6]
\(\int\limits^6_1f\left(x\right)dx=\int\limits^2_1f\left(x\right)dx+\int\limits^6_2f\left(x\right)dx=4+12=16\)
Câu 2:
Không tính được tích phân kia, tích phân \(\int\limits^3_1f\left(3x\right)dx\) thì còn tính được
\(\int_{-1}^0\)\(\dfrac{3x^2+3x+3}{x^3-3x+2}dx\)
Nếu \(\int_{a}^{b}f(x) dx=m; \int_{b}^{a}f(x) dx=n thì \int_{a}^{c}f(x) dx=?\)
Chắc bạn ghi nhầm đề? Tích phân cuối ko liên quan gì hết trơn đến 2 tích phân trước, bạn xem kĩ lại cận của 3 tích phân
Biết \(I = \int_{2}^{3}\dfrac{dx}{x^2+x} \) = aln3 + bln2, với ( a, b ϵ Z ). Tính tổng S = a + b
a) I= \(\int_{-1}^0\) \(x^3\sqrt{x+1}dx\)
b) \(I=2\int^1_0\)\(\dfrac{x^2dx}{\left(x+1\right)\sqrt{x+1}}\)
Tính tích phân của
\( a) \int_{1}^{e} \frac{cos(lnx)}{cos^2x}dx \)
\(b)\int_{0}^{\pi^2} xsin\sqrt{x}dx \)
\(c) \int_{0}^{\frac{1}{9}} \frac{x}{sin^2 (2x+1)} dx\)
Câu a: Tích phân không thể tính được
Câu b:
Đặt \(\sqrt{x}=t\). Khi đó:
\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)
Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:
\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)
\(=-t^3\cos t+3\int t^2\cos tdt\)
\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)
\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)
\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)
\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)
\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)
\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)
\(=2\pi ^3-12\pi \)
Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)
Khi đó:
\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)
Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)
\(=(-t\cot t+\int \cot tdt)+\cot t+c\)
\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)
\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)
\(=-t\cot t+\ln |\sin t|+\cot t+c\)
\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)
\(\approx 0,007\)
Câu 1:Tìm Nguyên hàm
a)\(\int_{x^2+4x-5}^{2x+4}dx\)
b)\(\int_{xlnx}^1dx\)
c)\(\int xsin\frac{x}{2}dx\)
d)\(\int\)x3ln(2x)dx
câu 2:Tìm hàm số y=f(x) biết
a) \(\int\)' (x)=4x3 -3x2 +2 và \(\int\)(-1)=3
giúp mình với mọi người ơi mình cảm ơn ạ,
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
Giả sử I = \(\int_{-1}^0\dfrac{3x^2+5x-1}{x-2}dx=aln\dfrac{2}{3}+b\).Khi đó giá trị a+2b là?
A. 30
B. 40
C. 50
D. 60
Tính (trình bày cách giải ln nka):
a) \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\dfrac{1}{cos^4x}dx\)
b) \(\int_0^1\dfrac{\left(x+1\right)^2}{x^2+1}dx\)
c)\(\int_1^2\dfrac{x^2+2lnx}{x}dx\)
d) \(\int_1^2\dfrac{x^2+3x+1}{x^2+x}dx\)
e) \(\int_0^33x\left(x+\sqrt{x^2+16}\right)dx\)
Câu a)
\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)
Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)
Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)
Vậy :
\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)
Câu b)
\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)
\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)
Do đó:
\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)
Câu c)
\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)
\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)
\(=\frac{x^2}{2}+c+\ln ^2x\)
\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)
Câu d)
\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)
\(=1+\ln 3\)
Câu e)
Xét \(\int 3x(x+\sqrt{x^2+16})dx=\int 3x^2dx+\int 3x\sqrt{x^2+16}dx\)
Có:
\(\int 3x^2dx=x^3+c\)
\(\int 3x\sqrt{x^2+16}dx=\frac{3}{2}\int \sqrt{x^2+16}d(x^2+16)\)
\(=\sqrt{(x^2+16)^3}+c\)
Do đó: \(\int 3x(x+\sqrt{x^2+16})dx=x^3+\sqrt{(x^2+16)^3}+c\)
\(\Rightarrow \int ^{3}_{0}3x(x+\sqrt{x^2+16})dx=\left.\begin{matrix} 3\\ 0\end{matrix}\right|(x^3+\sqrt{(x^2+16)^3}+c)=88\)